CFD Simulation Strategy for Hypersonic Aerodynamic Heating around a Blunt Biconic

The design of the thermal protection system requires high-precision and high-reliability CFD simulation for validation. To accurately predict the hypersonic aerodynamic heating, an overall simulation strategy based on mutual selection is proposed. Foremost, the grid criterion based on the wall cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of aerospace engineering 2021, Vol.2021, p.1-11
Hauptverfasser: Yu, Shutian, Ni, Xinyue, Chen, Fansheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title International journal of aerospace engineering
container_volume 2021
creator Yu, Shutian
Ni, Xinyue
Chen, Fansheng
description The design of the thermal protection system requires high-precision and high-reliability CFD simulation for validation. To accurately predict the hypersonic aerodynamic heating, an overall simulation strategy based on mutual selection is proposed. Foremost, the grid criterion based on the wall cell Reynolds number is developed. Subsequently, the dependence of the turbulence model and the discretization scheme is considered. It is suggested that the appropriate value of wall cell Reynolds number is 1 through careful comparison between one another and with the available experimental data. The excessive number of cells is not recommended due to time-consuming computation. It can be seen from the results that the combination of the AUSM+ discretization scheme and the Spalart-Allmaras turbulence model has the highest accuracy. In this work, the heat flux error of the stagnation point is within 1%, and the overall average relative error is within 10%.
doi_str_mv 10.1155/2021/8885074
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_crossref_primary_10_1155_2021_8885074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_78c7f22062204224929ad2a6737ac464</doaj_id><sourcerecordid>2518014246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-e2b56db72aab4fd7e61c572a445eabead3dcebd29cedb869753d66ba6321901c3</originalsourceid><addsrcrecordid>eNp9kU9Lw0AQxYMoWKs3P8CCR43d3eyf5NhWa4WCSPW8THY3dUuarZsEybc3NaVHD8O8GX68GXhRdEvwIyGcTyimZJKmKceSnUUjIlIZ80yy85MW4jK6qustxgJzyUfR-3zxhNZu15bQOF-hdROgsZsOFT6gZbe3ofaV02hqgzddBbteL23PVhsEwbeVQYBmZVs1aOb0Ab2OLgooa3tz7OPoc_H8MV_Gq7eX1_l0FWuGkya2NOfC5JIC5Kww0gqieT8xxi3kFkxitM0NzbQ1eSoyyRMjRA4ioSTDRCfj6HXwNR62ah_cDkKnPDj1t_BhoyA0TpdWyVTLglIs-mKUsoxmYCgImUjQTLDe627w2gf_3dq6UVvfhqp_X1FOUkwYZaKnHgZKB1_XwRanqwSrQwDqEIA6BtDj9wP-5SoDP-5_-hdytYQB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518014246</pqid></control><display><type>article</type><title>CFD Simulation Strategy for Hypersonic Aerodynamic Heating around a Blunt Biconic</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Yu, Shutian ; Ni, Xinyue ; Chen, Fansheng</creator><contributor>Xie, Kan ; Kan Xie</contributor><creatorcontrib>Yu, Shutian ; Ni, Xinyue ; Chen, Fansheng ; Xie, Kan ; Kan Xie</creatorcontrib><description>The design of the thermal protection system requires high-precision and high-reliability CFD simulation for validation. To accurately predict the hypersonic aerodynamic heating, an overall simulation strategy based on mutual selection is proposed. Foremost, the grid criterion based on the wall cell Reynolds number is developed. Subsequently, the dependence of the turbulence model and the discretization scheme is considered. It is suggested that the appropriate value of wall cell Reynolds number is 1 through careful comparison between one another and with the available experimental data. The excessive number of cells is not recommended due to time-consuming computation. It can be seen from the results that the combination of the AUSM+ discretization scheme and the Spalart-Allmaras turbulence model has the highest accuracy. In this work, the heat flux error of the stagnation point is within 1%, and the overall average relative error is within 10%.</description><identifier>ISSN: 1687-5966</identifier><identifier>EISSN: 1687-5974</identifier><identifier>DOI: 10.1155/2021/8885074</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Aerodynamic heating ; Aerodynamics ; Aerospace engineering ; Aircraft ; Computational fluid dynamics ; Discretization ; Experiments ; Fluid flow ; Geometry ; Heat ; Heat flux ; Model accuracy ; Reynolds number ; Simulation ; Spalart-Allmaras turbulence model ; Stagnation point ; Thermal protection ; Turbulence models ; Vehicles</subject><ispartof>International journal of aerospace engineering, 2021, Vol.2021, p.1-11</ispartof><rights>Copyright © 2021 Shutian Yu et al.</rights><rights>Copyright © 2021 Shutian Yu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-e2b56db72aab4fd7e61c572a445eabead3dcebd29cedb869753d66ba6321901c3</citedby><cites>FETCH-LOGICAL-c403t-e2b56db72aab4fd7e61c572a445eabead3dcebd29cedb869753d66ba6321901c3</cites><orcidid>0000-0003-2244-8327 ; 0000-0002-0334-6299 ; 0000-0002-0140-0909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,877,2102,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Xie, Kan</contributor><contributor>Kan Xie</contributor><creatorcontrib>Yu, Shutian</creatorcontrib><creatorcontrib>Ni, Xinyue</creatorcontrib><creatorcontrib>Chen, Fansheng</creatorcontrib><title>CFD Simulation Strategy for Hypersonic Aerodynamic Heating around a Blunt Biconic</title><title>International journal of aerospace engineering</title><description>The design of the thermal protection system requires high-precision and high-reliability CFD simulation for validation. To accurately predict the hypersonic aerodynamic heating, an overall simulation strategy based on mutual selection is proposed. Foremost, the grid criterion based on the wall cell Reynolds number is developed. Subsequently, the dependence of the turbulence model and the discretization scheme is considered. It is suggested that the appropriate value of wall cell Reynolds number is 1 through careful comparison between one another and with the available experimental data. The excessive number of cells is not recommended due to time-consuming computation. It can be seen from the results that the combination of the AUSM+ discretization scheme and the Spalart-Allmaras turbulence model has the highest accuracy. In this work, the heat flux error of the stagnation point is within 1%, and the overall average relative error is within 10%.</description><subject>Accuracy</subject><subject>Aerodynamic heating</subject><subject>Aerodynamics</subject><subject>Aerospace engineering</subject><subject>Aircraft</subject><subject>Computational fluid dynamics</subject><subject>Discretization</subject><subject>Experiments</subject><subject>Fluid flow</subject><subject>Geometry</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Model accuracy</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Spalart-Allmaras turbulence model</subject><subject>Stagnation point</subject><subject>Thermal protection</subject><subject>Turbulence models</subject><subject>Vehicles</subject><issn>1687-5966</issn><issn>1687-5974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU9Lw0AQxYMoWKs3P8CCR43d3eyf5NhWa4WCSPW8THY3dUuarZsEybc3NaVHD8O8GX68GXhRdEvwIyGcTyimZJKmKceSnUUjIlIZ80yy85MW4jK6qustxgJzyUfR-3zxhNZu15bQOF-hdROgsZsOFT6gZbe3ofaV02hqgzddBbteL23PVhsEwbeVQYBmZVs1aOb0Ab2OLgooa3tz7OPoc_H8MV_Gq7eX1_l0FWuGkya2NOfC5JIC5Kww0gqieT8xxi3kFkxitM0NzbQ1eSoyyRMjRA4ioSTDRCfj6HXwNR62ah_cDkKnPDj1t_BhoyA0TpdWyVTLglIs-mKUsoxmYCgImUjQTLDe627w2gf_3dq6UVvfhqp_X1FOUkwYZaKnHgZKB1_XwRanqwSrQwDqEIA6BtDj9wP-5SoDP-5_-hdytYQB</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Yu, Shutian</creator><creator>Ni, Xinyue</creator><creator>Chen, Fansheng</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2244-8327</orcidid><orcidid>https://orcid.org/0000-0002-0334-6299</orcidid><orcidid>https://orcid.org/0000-0002-0140-0909</orcidid></search><sort><creationdate>2021</creationdate><title>CFD Simulation Strategy for Hypersonic Aerodynamic Heating around a Blunt Biconic</title><author>Yu, Shutian ; Ni, Xinyue ; Chen, Fansheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-e2b56db72aab4fd7e61c572a445eabead3dcebd29cedb869753d66ba6321901c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Aerodynamic heating</topic><topic>Aerodynamics</topic><topic>Aerospace engineering</topic><topic>Aircraft</topic><topic>Computational fluid dynamics</topic><topic>Discretization</topic><topic>Experiments</topic><topic>Fluid flow</topic><topic>Geometry</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Model accuracy</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Spalart-Allmaras turbulence model</topic><topic>Stagnation point</topic><topic>Thermal protection</topic><topic>Turbulence models</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Shutian</creatorcontrib><creatorcontrib>Ni, Xinyue</creatorcontrib><creatorcontrib>Chen, Fansheng</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Shutian</au><au>Ni, Xinyue</au><au>Chen, Fansheng</au><au>Xie, Kan</au><au>Kan Xie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD Simulation Strategy for Hypersonic Aerodynamic Heating around a Blunt Biconic</atitle><jtitle>International journal of aerospace engineering</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1687-5966</issn><eissn>1687-5974</eissn><abstract>The design of the thermal protection system requires high-precision and high-reliability CFD simulation for validation. To accurately predict the hypersonic aerodynamic heating, an overall simulation strategy based on mutual selection is proposed. Foremost, the grid criterion based on the wall cell Reynolds number is developed. Subsequently, the dependence of the turbulence model and the discretization scheme is considered. It is suggested that the appropriate value of wall cell Reynolds number is 1 through careful comparison between one another and with the available experimental data. The excessive number of cells is not recommended due to time-consuming computation. It can be seen from the results that the combination of the AUSM+ discretization scheme and the Spalart-Allmaras turbulence model has the highest accuracy. In this work, the heat flux error of the stagnation point is within 1%, and the overall average relative error is within 10%.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/8885074</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2244-8327</orcidid><orcidid>https://orcid.org/0000-0002-0334-6299</orcidid><orcidid>https://orcid.org/0000-0002-0140-0909</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5966
ispartof International journal of aerospace engineering, 2021, Vol.2021, p.1-11
issn 1687-5966
1687-5974
language eng
recordid cdi_crossref_primary_10_1155_2021_8885074
source DOAJ Directory of Open Access Journals; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Accuracy
Aerodynamic heating
Aerodynamics
Aerospace engineering
Aircraft
Computational fluid dynamics
Discretization
Experiments
Fluid flow
Geometry
Heat
Heat flux
Model accuracy
Reynolds number
Simulation
Spalart-Allmaras turbulence model
Stagnation point
Thermal protection
Turbulence models
Vehicles
title CFD Simulation Strategy for Hypersonic Aerodynamic Heating around a Blunt Biconic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A32%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20Simulation%20Strategy%20for%20Hypersonic%20Aerodynamic%20Heating%20around%20a%20Blunt%20Biconic&rft.jtitle=International%20journal%20of%20aerospace%20engineering&rft.au=Yu,%20Shutian&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1687-5966&rft.eissn=1687-5974&rft_id=info:doi/10.1155/2021/8885074&rft_dat=%3Cproquest_doaj_%3E2518014246%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518014246&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_78c7f22062204224929ad2a6737ac464&rfr_iscdi=true