CFD Simulation Strategy for Hypersonic Aerodynamic Heating around a Blunt Biconic

The design of the thermal protection system requires high-precision and high-reliability CFD simulation for validation. To accurately predict the hypersonic aerodynamic heating, an overall simulation strategy based on mutual selection is proposed. Foremost, the grid criterion based on the wall cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of aerospace engineering 2021, Vol.2021, p.1-11
Hauptverfasser: Yu, Shutian, Ni, Xinyue, Chen, Fansheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The design of the thermal protection system requires high-precision and high-reliability CFD simulation for validation. To accurately predict the hypersonic aerodynamic heating, an overall simulation strategy based on mutual selection is proposed. Foremost, the grid criterion based on the wall cell Reynolds number is developed. Subsequently, the dependence of the turbulence model and the discretization scheme is considered. It is suggested that the appropriate value of wall cell Reynolds number is 1 through careful comparison between one another and with the available experimental data. The excessive number of cells is not recommended due to time-consuming computation. It can be seen from the results that the combination of the AUSM+ discretization scheme and the Spalart-Allmaras turbulence model has the highest accuracy. In this work, the heat flux error of the stagnation point is within 1%, and the overall average relative error is within 10%.
ISSN:1687-5966
1687-5974
DOI:10.1155/2021/8885074