L p Smoothness on Weighted Besov–Triebel–Lizorkin Spaces in terms of Sharp Maximal Functions

It is known, in harmonic analysis theory, that maximal operators measure local smoothness of L p functions. These operators are used to study many important problems of function theory such as the embedding theorems of Sobolev type and description of Sobolev space in terms of the metric and measure....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematics (Hidawi) 2021-11, Vol.2021, p.1-9
Hauptverfasser: Gürbüz, Ferit, Loulit, Ahmed
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is known, in harmonic analysis theory, that maximal operators measure local smoothness of L p functions. These operators are used to study many important problems of function theory such as the embedding theorems of Sobolev type and description of Sobolev space in terms of the metric and measure. We study the Sobolev-type embedding results on weighted Besov–Triebel–Lizorkin spaces via the sharp maximal functions. The purpose of this paper is to study the extent of smoothness on weighted function spaces under the condition M α # f ∈ L p , μ , where μ is a lower doubling measure, M α # f stands for the sharp maximal function of f , and 0 ≤ α ≤ 1 is the degree of smoothness.
ISSN:2314-4629
2314-4785
DOI:10.1155/2021/8104815