Fixed-Point Results for Generalized α -Admissible Hardy-Rogers’ Contractions in Cone b 2 -Metric Spaces over Banach’s Algebras with Application

In the current manuscript, the notion of a cone b 2 -metric space over Banach’s algebra with parameter b ≻ ¯ e is introduced. Furthermore, using α -admissible Hardy-Rogers’ contractive conditions, we have proven fixed-point theorems for self-mappings, which generalize and strengthen many of the conc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematical physics 2020-12, Vol.2020, p.1-12
Hauptverfasser: Islam, Ziaul, Sarwar, Muhammad, de la Sen, Manuel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the current manuscript, the notion of a cone b 2 -metric space over Banach’s algebra with parameter b ≻ ¯ e is introduced. Furthermore, using α -admissible Hardy-Rogers’ contractive conditions, we have proven fixed-point theorems for self-mappings, which generalize and strengthen many of the conclusions in existing literature. In order to verify our key result, a nontrivial example is given, and as an application, we proved a theorem that shows the existence of a solution of an infinite system of integral equations.
ISSN:1687-9120
1687-9139
DOI:10.1155/2020/8826060