Fixed-Point Results for Generalized α -Admissible Hardy-Rogers’ Contractions in Cone b 2 -Metric Spaces over Banach’s Algebras with Application
In the current manuscript, the notion of a cone b 2 -metric space over Banach’s algebra with parameter b ≻ ¯ e is introduced. Furthermore, using α -admissible Hardy-Rogers’ contractive conditions, we have proven fixed-point theorems for self-mappings, which generalize and strengthen many of the conc...
Gespeichert in:
Veröffentlicht in: | Advances in mathematical physics 2020-12, Vol.2020, p.1-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the current manuscript, the notion of a cone
b
2
-metric space over Banach’s algebra with parameter
b
≻
¯
e
is introduced. Furthermore, using
α
-admissible Hardy-Rogers’ contractive conditions, we have proven fixed-point theorems for self-mappings, which generalize and strengthen many of the conclusions in existing literature. In order to verify our key result, a nontrivial example is given, and as an application, we proved a theorem that shows the existence of a solution of an infinite system of integral equations. |
---|---|
ISSN: | 1687-9120 1687-9139 |
DOI: | 10.1155/2020/8826060 |