Solution of Singularly Perturbed Differential-Difference Equations with Mixed Shifts Using Galerkin Method with Exponential Fitting
Galerkin method is presented to solve singularly perturbed differential-difference equations with delay and advanced shifts using fitting factor. In the numerical treatment of such type of problems, Taylor’s approximation is used to tackle the terms containing small shifts. A fitting factor in the G...
Gespeichert in:
Veröffentlicht in: | Chinese Journal of Mathematics 2016-10, Vol.2016, p.1-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Galerkin method is presented to solve singularly perturbed differential-difference equations with delay and advanced shifts using fitting factor. In the numerical treatment of such type of problems, Taylor’s approximation is used to tackle the terms containing small shifts. A fitting factor in the Galerkin scheme is introduced which takes care of the rapid changes that occur in the boundary layer. This fitting factor is obtained from the asymptotic solution of singular perturbations. Thomas algorithm is used to solve the tridiagonal system of the fitted Galerkin method. The method is analysed for convergence. Several numerical examples are solved and compared to demonstrate the applicability of the method. Graphs are plotted for the solutions of these problems to illustrate the effect of small shifts on the boundary layer solution. |
---|---|
ISSN: | 2314-8071 2314-8071 |
DOI: | 10.1155/2016/1935853 |