Generalized Malcev-Neumann Series Modules with the Beachy-Blair Condition
We introduce a new class of extension rings called the generalized Malcev-Neumann series ring R((S;σ;τ)) with coefficients in a ring R and exponents in a strictly ordered monoid S which extends the usual construction of Malcev-Neumann series rings. Ouyang et al. in 2014 introduced the modules with t...
Gespeichert in:
Veröffentlicht in: | Algebra (Hindawi) 2015-03, Vol.2015, p.1-4 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a new class of extension rings called the generalized Malcev-Neumann series ring R((S;σ;τ)) with coefficients in a ring R and exponents in a strictly ordered monoid S which extends the usual construction of Malcev-Neumann series rings. Ouyang et al. in 2014 introduced the modules with the Beachy-Blair condition as follows: A right R-module satisfies the right Beachy-Blair condition if each of its faithful submodules is cofaithful. In this paper, we study the relationship between the right Beachy-Blair condition of a right R-module MR and its Malcev-Neumann series module extension MSR((S;σ;τ)). |
---|---|
ISSN: | 2314-4106 2314-4114 |
DOI: | 10.1155/2015/595274 |