Rare Earth Doped Silica Optical Fibre Sensors for Dosimetry in Medical and Technical Applications

Radioluminescence optical fibre sensors are gaining importance since these devices are promising in several applications like high energy physics, particle tracking, real-time monitoring of radiation beams, and radioactive waste. Silica optical fibres play an important role thanks to their high radi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Optics 2014-10, Vol.2014, p.1-9
Hauptverfasser: Chiodini, N., Vedda, A., Veronese, I.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Radioluminescence optical fibre sensors are gaining importance since these devices are promising in several applications like high energy physics, particle tracking, real-time monitoring of radiation beams, and radioactive waste. Silica optical fibres play an important role thanks to their high radiation hardness. Moreover, rare earths may be incorporated to optimise the scintillation properties (emission spectrum, decay time) according to the particular application. This makes doped silica optical fibres a very versatile tool for the detection of ionizing radiation in many contexts. Among the fields of application of optical fibre sensors, radiation therapy represents a driving force for the research and development of new devices. In this review the recent progresses in the development of rare earth doped silica fibres for dosimetry in the medical field are described. After a general description of advantages and challenges for the use of optical fibre based dosimeter during radiation therapy treatment and diagnostic irradiations, the features of the incorporation of rare earths in the silica matrix in order to prepare radioluminescent optical fibre sensors are presented and discussed. In the last part of this paper, recent results obtained by using cerium, europium, and ytterbium doped silica optical fibres in radiation therapy applications are reviewed.
ISSN:2356-6817
2314-7741
DOI:10.1155/2014/974584