Vertex Coalgebras, Coassociator, and Cocommutator Formulas
Based on the definition of vertex coalgebra introduced by Hubbard, 2009, we prove that this notion can be reformulated using coskew symmetry, coassociator and cocommutator formulas without restrictions on the grading. We also prove that a vertex coalgebra can be defined in terms of dual versions of...
Gespeichert in:
Veröffentlicht in: | Algebra (Hindawi) 2014-03, Vol.2014 (2014), p.1-17 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Based on the definition of vertex coalgebra introduced by Hubbard, 2009, we prove that this notion can be reformulated using coskew symmetry, coassociator and cocommutator formulas without restrictions on the grading. We also prove that a vertex coalgebra can be defined in terms of dual versions of the axioms of Lie conformal algebra and differential algebra. |
---|---|
ISSN: | 2314-4106 2314-4114 |
DOI: | 10.1155/2014/861768 |