Vertex Coalgebras, Coassociator, and Cocommutator Formulas

Based on the definition of vertex coalgebra introduced by Hubbard, 2009, we prove that this notion can be reformulated using coskew symmetry, coassociator and cocommutator formulas without restrictions on the grading. We also prove that a vertex coalgebra can be defined in terms of dual versions of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra (Hindawi) 2014-03, Vol.2014 (2014), p.1-17
Hauptverfasser: Orosz Hunziker, Florencia, Liberati, José I.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on the definition of vertex coalgebra introduced by Hubbard, 2009, we prove that this notion can be reformulated using coskew symmetry, coassociator and cocommutator formulas without restrictions on the grading. We also prove that a vertex coalgebra can be defined in terms of dual versions of the axioms of Lie conformal algebra and differential algebra.
ISSN:2314-4106
2314-4114
DOI:10.1155/2014/861768