On Convergence with respect to an Ideal and a Family of Matrices
P. Das et al. recently introduced and studied the notions of strong AI-summability with respect to an Orlicz function F and AI-statistical convergence, where A is a nonnegative regular matrix and I is an ideal on the set of natural numbers. In this paper, we will generalise these notions by replacin...
Gespeichert in:
Veröffentlicht in: | International journal of analysis 2014-01, Vol.2014 (2014), p.1-15 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | P. Das et al. recently introduced and studied the notions of strong AI-summability with respect to an Orlicz function F and AI-statistical convergence, where A is a nonnegative regular matrix and I is an ideal on the set of natural numbers. In this paper, we will generalise these notions by replacing A with a family of matrices and F with a family of Orlicz functions or moduli and study the thus obtained convergence methods. We will also give an application in Banach space theory, presenting a generalisation of Simons' sup-limsup-theorem to the newly introduced convergence methods (for the case that the filter generated by the ideal I has a countable base), continuing some of the author's previous work. |
---|---|
ISSN: | 2314-498X 2314-4998 |
DOI: | 10.1155/2014/490904 |