A Note on Jordan Triple Higher -Derivations on Semiprime Rings

We introduce the following notion. Let ℕ0 be the set of all nonnegative integers and let D=(di)i∈ℕ0 be a family of additive mappings of a *-ring R such that d0=idR; D is called a Jordan higher *-derivation (resp., a Jordan higher *-derivation) of R if dn(x2)=∑i+j=n‍di(x)dj(x*i) (resp., dn(xyx)=∑i+j+...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISRN algebra 2014-12, Vol.2014, p.1-5
1. Verfasser: Ezzat, O. H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title ISRN algebra
container_volume 2014
creator Ezzat, O. H.
description We introduce the following notion. Let ℕ0 be the set of all nonnegative integers and let D=(di)i∈ℕ0 be a family of additive mappings of a *-ring R such that d0=idR; D is called a Jordan higher *-derivation (resp., a Jordan higher *-derivation) of R if dn(x2)=∑i+j=n‍di(x)dj(x*i) (resp., dn(xyx)=∑i+j+k=n‍di(x)dj(y*i)dk(x*i+j)) for all x,y∈R and each n∈ℕ0. It is shown that the notions of Jordan higher *-derivations and Jordan triple higher *-derivations on a 6-torsion free semiprime *-ring are coincident.
doi_str_mv 10.1155/2014/365424
format Article
fullrecord <record><control><sourceid>crossref_hinda</sourceid><recordid>TN_cdi_crossref_primary_10_1155_2014_365424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1155_2014_365424</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2124-465d2c0972cdebd79ad763f9a799ff4917e6c9cad511732b6cbe3a33928f61c93</originalsourceid><addsrcrecordid>eNp9j0tLAzEUhYMoWGpX_oGslbF5zU3vRijVWqUoaF0PmTzaSDtTkqL47-0wLlx5N-cuPg7nI-SSsxvOy3IsGFdjCaUS6oQMBENWgEB5-uc_J6OcP9jxJgASYEBup_S5PXjaNvSpTc40dJXifuvpIq43PtHizqf4aQ6xbXIHvfld3Ke48_Q1Nut8Qc6C2WY_-s0heZ_fr2aLYvny8DibLgsjuFCFgtIJy1AL63ztNBqnQQY0GjEEhVx7sGiNKznXUtRgay-NlCgmAbhFOSTXfa9Nbc7Jh6obYdJ3xVnV2VedfdXbH-mrnt7Expmv-C_8A3FxV3s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Note on Jordan Triple Higher -Derivations on Semiprime Rings</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ezzat, O. H.</creator><contributor>Kittaneh, F. ; Jaballah, A. ; You, H. ; Aljadeff, E. ; Kılıçman, A.</contributor><creatorcontrib>Ezzat, O. H. ; Kittaneh, F. ; Jaballah, A. ; You, H. ; Aljadeff, E. ; Kılıçman, A.</creatorcontrib><description>We introduce the following notion. Let ℕ0 be the set of all nonnegative integers and let D=(di)i∈ℕ0 be a family of additive mappings of a *-ring R such that d0=idR; D is called a Jordan higher *-derivation (resp., a Jordan higher *-derivation) of R if dn(x2)=∑i+j=n‍di(x)dj(x*i) (resp., dn(xyx)=∑i+j+k=n‍di(x)dj(y*i)dk(x*i+j)) for all x,y∈R and each n∈ℕ0. It is shown that the notions of Jordan higher *-derivations and Jordan triple higher *-derivations on a 6-torsion free semiprime *-ring are coincident.</description><identifier>ISSN: 2090-6293</identifier><identifier>EISSN: 2090-6293</identifier><identifier>DOI: 10.1155/2014/365424</identifier><language>eng</language><publisher>Hindawi Publishing Corporation</publisher><ispartof>ISRN algebra, 2014-12, Vol.2014, p.1-5</ispartof><rights>Copyright © 2014 O. H. Ezzat.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2124-465d2c0972cdebd79ad763f9a799ff4917e6c9cad511732b6cbe3a33928f61c93</citedby><cites>FETCH-LOGICAL-a2124-465d2c0972cdebd79ad763f9a799ff4917e6c9cad511732b6cbe3a33928f61c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Kittaneh, F.</contributor><contributor>Jaballah, A.</contributor><contributor>You, H.</contributor><contributor>Aljadeff, E.</contributor><contributor>Kılıçman, A.</contributor><creatorcontrib>Ezzat, O. H.</creatorcontrib><title>A Note on Jordan Triple Higher -Derivations on Semiprime Rings</title><title>ISRN algebra</title><description>We introduce the following notion. Let ℕ0 be the set of all nonnegative integers and let D=(di)i∈ℕ0 be a family of additive mappings of a *-ring R such that d0=idR; D is called a Jordan higher *-derivation (resp., a Jordan higher *-derivation) of R if dn(x2)=∑i+j=n‍di(x)dj(x*i) (resp., dn(xyx)=∑i+j+k=n‍di(x)dj(y*i)dk(x*i+j)) for all x,y∈R and each n∈ℕ0. It is shown that the notions of Jordan higher *-derivations and Jordan triple higher *-derivations on a 6-torsion free semiprime *-ring are coincident.</description><issn>2090-6293</issn><issn>2090-6293</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9j0tLAzEUhYMoWGpX_oGslbF5zU3vRijVWqUoaF0PmTzaSDtTkqL47-0wLlx5N-cuPg7nI-SSsxvOy3IsGFdjCaUS6oQMBENWgEB5-uc_J6OcP9jxJgASYEBup_S5PXjaNvSpTc40dJXifuvpIq43PtHizqf4aQ6xbXIHvfld3Ke48_Q1Nut8Qc6C2WY_-s0heZ_fr2aLYvny8DibLgsjuFCFgtIJy1AL63ztNBqnQQY0GjEEhVx7sGiNKznXUtRgay-NlCgmAbhFOSTXfa9Nbc7Jh6obYdJ3xVnV2VedfdXbH-mrnt7Expmv-C_8A3FxV3s</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Ezzat, O. H.</creator><general>Hindawi Publishing Corporation</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20141201</creationdate><title>A Note on Jordan Triple Higher -Derivations on Semiprime Rings</title><author>Ezzat, O. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2124-465d2c0972cdebd79ad763f9a799ff4917e6c9cad511732b6cbe3a33928f61c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ezzat, O. H.</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><jtitle>ISRN algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ezzat, O. H.</au><au>Kittaneh, F.</au><au>Jaballah, A.</au><au>You, H.</au><au>Aljadeff, E.</au><au>Kılıçman, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Note on Jordan Triple Higher -Derivations on Semiprime Rings</atitle><jtitle>ISRN algebra</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>2014</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>2090-6293</issn><eissn>2090-6293</eissn><abstract>We introduce the following notion. Let ℕ0 be the set of all nonnegative integers and let D=(di)i∈ℕ0 be a family of additive mappings of a *-ring R such that d0=idR; D is called a Jordan higher *-derivation (resp., a Jordan higher *-derivation) of R if dn(x2)=∑i+j=n‍di(x)dj(x*i) (resp., dn(xyx)=∑i+j+k=n‍di(x)dj(y*i)dk(x*i+j)) for all x,y∈R and each n∈ℕ0. It is shown that the notions of Jordan higher *-derivations and Jordan triple higher *-derivations on a 6-torsion free semiprime *-ring are coincident.</abstract><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2014/365424</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2090-6293
ispartof ISRN algebra, 2014-12, Vol.2014, p.1-5
issn 2090-6293
2090-6293
language eng
recordid cdi_crossref_primary_10_1155_2014_365424
source EZB-FREE-00999 freely available EZB journals
title A Note on Jordan Triple Higher -Derivations on Semiprime Rings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T10%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_hinda&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Note%20on%20Jordan%20Triple%20Higher%20-Derivations%20on%20Semiprime%20Rings&rft.jtitle=ISRN%20algebra&rft.au=Ezzat,%20O.%20H.&rft.date=2014-12-01&rft.volume=2014&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=2090-6293&rft.eissn=2090-6293&rft_id=info:doi/10.1155/2014/365424&rft_dat=%3Ccrossref_hinda%3E10_1155_2014_365424%3C/crossref_hinda%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true