A Note on Jordan Triple Higher -Derivations on Semiprime Rings

We introduce the following notion. Let ℕ0 be the set of all nonnegative integers and let D=(di)i∈ℕ0 be a family of additive mappings of a *-ring R such that d0=idR; D is called a Jordan higher *-derivation (resp., a Jordan higher *-derivation) of R if dn(x2)=∑i+j=n‍di(x)dj(x*i) (resp., dn(xyx)=∑i+j+...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISRN algebra 2014-12, Vol.2014, p.1-5
1. Verfasser: Ezzat, O. H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce the following notion. Let ℕ0 be the set of all nonnegative integers and let D=(di)i∈ℕ0 be a family of additive mappings of a *-ring R such that d0=idR; D is called a Jordan higher *-derivation (resp., a Jordan higher *-derivation) of R if dn(x2)=∑i+j=n‍di(x)dj(x*i) (resp., dn(xyx)=∑i+j+k=n‍di(x)dj(y*i)dk(x*i+j)) for all x,y∈R and each n∈ℕ0. It is shown that the notions of Jordan higher *-derivations and Jordan triple higher *-derivations on a 6-torsion free semiprime *-ring are coincident.
ISSN:2090-6293
2090-6293
DOI:10.1155/2014/365424