A Note on Jordan Triple Higher -Derivations on Semiprime Rings
We introduce the following notion. Let ℕ0 be the set of all nonnegative integers and let D=(di)i∈ℕ0 be a family of additive mappings of a *-ring R such that d0=idR; D is called a Jordan higher *-derivation (resp., a Jordan higher *-derivation) of R if dn(x2)=∑i+j=ndi(x)dj(x*i) (resp., dn(xyx)=∑i+j+...
Gespeichert in:
Veröffentlicht in: | ISRN algebra 2014-12, Vol.2014, p.1-5 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce the following notion. Let ℕ0 be the set of all nonnegative integers and let D=(di)i∈ℕ0 be a family of additive mappings of a *-ring R such that d0=idR; D is called a Jordan higher *-derivation (resp., a Jordan higher *-derivation) of R if dn(x2)=∑i+j=ndi(x)dj(x*i) (resp., dn(xyx)=∑i+j+k=ndi(x)dj(y*i)dk(x*i+j)) for all x,y∈R and each n∈ℕ0. It is shown that the notions of Jordan higher *-derivations and Jordan triple higher *-derivations on a 6-torsion free semiprime *-ring are coincident. |
---|---|
ISSN: | 2090-6293 2090-6293 |
DOI: | 10.1155/2014/365424 |