Development and Validation of a Stability Indicating RP-UPLC Method for Analysis of Imipramine Hydrochloride in Pharmaceuticals

The objective of the current study was the development of a simple, rapid, and accurate isocratic reverse-phase ultra-performance liquid chromatographic (RP-UPLC) method for the routine control analysis of imipramine hydrochloride (IMH) in bulk drug and in pharmaceutical formulations. This work was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISRN analytical chemistry 2013-01, Vol.2013, p.1-10
Hauptverfasser: Deepakumari, H. N., Vinay, K. B., Revanasiddappa, H. D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of the current study was the development of a simple, rapid, and accurate isocratic reverse-phase ultra-performance liquid chromatographic (RP-UPLC) method for the routine control analysis of imipramine hydrochloride (IMH) in bulk drug and in pharmaceutical formulations. This work was carried out in order to reduce analysis time and maintaining good efficiency which in turn is focused on high-speed chromatographic separations. The method was developed using Waters Acquity BEH C18 column (100 mm × 2.1 mm, 1.7 μm) with mobile phase consisting of a mixture of acetonitrile and ammonium acetate buffer of pH-5 (80 : 20, v/v/v). UV detection was performed at 220 nm for eluted compound. An excellent linearity was observed in the concentration range 0.2–3 µg/mL IMH with a regression coefficient (r2) value of 0.9999. The method developed was validated and forced degradation was performed as per ICH guidelines. The limit of detection (S/N=3) was 0.2532 ng/mL and the limit of quantitation (S/N=10) was found to be 0.7672 ng/mL. The drug IMH was subjected to hydrolytic, acidic, basic, thermal, photolytic, and oxidative stress conditions according to ICH regulations. IMH was found to be stable in basic, thermal, and photolytic conditions and degrades in acidic, hydrolytic, and oxidative stress conditions.
ISSN:2090-732X
2090-732X
DOI:10.1155/2013/913765