Subdividing the Trefoil by Origami
In 2005, David Cox and Jerry Shurman proved that the curves they call m-clovers can be subdivided into n equal lengths (for certain values of n) by origami, in the cases where m=1, 2, 3, and 4. In this paper, we expand their work to include the 6-clover.
Gespeichert in:
Veröffentlicht in: | Geometry: An International Journal 2013-01, Vol.2013 (2013), p.1-4 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 2005, David Cox and Jerry Shurman proved that the curves they call m-clovers can be subdivided into n equal lengths (for certain values of n) by origami, in the cases where m=1, 2, 3, and 4. In this paper, we expand their work to include the 6-clover. |
---|---|
ISSN: | 2314-422X 2314-4238 |
DOI: | 10.1155/2013/897320 |