Subdividing the Trefoil by Origami

In 2005, David Cox and Jerry Shurman proved that the curves they call m-clovers can be subdivided into n equal lengths (for certain values of n) by origami, in the cases where m=1, 2, 3, and 4. In this paper, we expand their work to include the 6-clover.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometry: An International Journal 2013-01, Vol.2013 (2013), p.1-4
Hauptverfasser: Langer, Joel C., Singer, David A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 2005, David Cox and Jerry Shurman proved that the curves they call m-clovers can be subdivided into n equal lengths (for certain values of n) by origami, in the cases where m=1, 2, 3, and 4. In this paper, we expand their work to include the 6-clover.
ISSN:2314-422X
2314-4238
DOI:10.1155/2013/897320