Symmetric Tensor Rank and Scheme Rank : An Upper Bound in terms of Secant Varieties

Let X⊂ℙr be an integral and nondegenerate variety. Let c be the minimal integer such that ℙr is the c-secant variety of X, that is, the minimal integer c such that for a general O∈ℙr there is S⊂X with #(S)=c and O∈〈S〉, where 〈 〉 is the linear span. Here we prove that for every P∈ℙr there is a zero-d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometry: An International Journal 2013-09, Vol.2013 (2013), p.1-3
1. Verfasser: Ballico, Edoardo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X⊂ℙr be an integral and nondegenerate variety. Let c be the minimal integer such that ℙr is the c-secant variety of X, that is, the minimal integer c such that for a general O∈ℙr there is S⊂X with #(S)=c and O∈〈S〉, where 〈 〉 is the linear span. Here we prove that for every P∈ℙr there is a zero-dimensional scheme Z⊂X such that P∈〈Z〉 and deg(Z)≤2c; we may take Z as union of points and tangent vectors of Xreg.
ISSN:2314-422X
2314-4238
DOI:10.1155/2013/614195