Common Fixed Points in a Partially Ordered Partial Metric Space

In the first part of this paper, we prove some generalized versions of the result of Matthews in (Matthews, 1994) using different types of conditions in partially ordered partial metric spaces for dominated self-mappings or in partial metric spaces for self-mappings. In the second part, using our re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of analysis 2013-01, Vol.2013 (2013), p.1-8
Hauptverfasser: Paesano, Daniela, Vetro, Pasquale
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the first part of this paper, we prove some generalized versions of the result of Matthews in (Matthews, 1994) using different types of conditions in partially ordered partial metric spaces for dominated self-mappings or in partial metric spaces for self-mappings. In the second part, using our results, we deduce a characterization of partial metric 0-completeness in terms of fixed point theory. This result extends the Subrahmanyam characterization of metric completeness.
ISSN:2314-498X
2314-4998
DOI:10.1155/2013/428561