Insight into Equilibrium and Kinetics of the Binding of Cadmium Ions on Radiation-Modified Straw from Oryza sativa
The present study reports the chemical modification of agricultural waste (rice straw) with urea using microwave radiation and the efficiency evaluation of this modified rice straw for the adsorption of a toxic heavy metal, cadmium. The elemental analysis of urea modified rice straw affirmed urea gr...
Gespeichert in:
Veröffentlicht in: | Journal of Applied Chemistry (Hindawi) 2013-07, Vol.2013 (2013), p.1-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present study reports the chemical modification of agricultural waste (rice straw) with urea using microwave radiation and the efficiency evaluation of this modified rice straw for the adsorption of a toxic heavy metal, cadmium. The elemental analysis of urea modified rice straw affirmed urea grafting on rice straw, and FTIR spectra of chemically benign modified adsorbent showed the presence of hydroxyl, carbonyl, and amino functional groups. Effects of process parameters (adsorbent dosage, contact time, agitation speed, pH, and temperature) were studied in batch mode. Parameters were optimized for the equilibrium study, and adsorption mechanism was elucidated using five mathematical models (Langmuir, Freundlich, Temkin, Harkin-Jura, and Dubinin-Radushkevich). Binding of Cd(II) ions on modified adsorbent followed Langmuir model, and the maximum uptake capacity was found to be 20.70 mg g−1. Kinetic modeling was done using six different kinetic models. The process was considered physisorption according to the obtained activation energy value. Thermodynamic parameters confirmed the process to be favorable and feasible. Exothermic nature of adsorption of Cd(II) ions on urea modified rice straw was confirmed by the negative value of ΔH°. |
---|---|
ISSN: | 2356-7171 2314-6923 2314-6923 |
DOI: | 10.1155/2013/417180 |