On Global Existence of Solutions of the Neumann Problem for Spherically Symmetric Nonlinear Viscoelasticity in a Ball
We examine spherically symmetric solutions to the viscoelasticity system in a ball with the Neumann boundary conditions. Imposing some growth restrictions on the nonlinear part of the stress tensor, we prove the existence of global regular solutions for large data in the weighted Sobolev spaces, whe...
Gespeichert in:
Veröffentlicht in: | ISRN mathematical analysis 2013-03, Vol.2013, p.1-13 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | ISRN mathematical analysis |
container_volume | 2013 |
creator | Gawinecki, Jerzy A. Zajączkowski, Wojciech M. |
description | We examine spherically symmetric solutions to the viscoelasticity system in a ball with the Neumann boundary conditions. Imposing some growth restrictions on the nonlinear part of the stress tensor, we prove the existence of global regular solutions for large data in the weighted Sobolev spaces, where the weight is a power function of the distance to the centre of the ball. First, we prove a global a priori estimate. Then existence is proved by the method of successive approximations and appropriate time extension. |
doi_str_mv | 10.1155/2013/268505 |
format | Article |
fullrecord | <record><control><sourceid>crossref_hinda</sourceid><recordid>TN_cdi_crossref_primary_10_1155_2013_268505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1155_2013_268505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1085-192a3f01386bc3d91f5471a6fc0c5634dc607d6fb23dbf8ccbc1818d41a1dab93</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGpP_oGclbWZ3U26e9RSq1Baoep1ySeNZJOSbNH9991SD56cyzsvPAzMg9AtkAcASqc5gWKas4oSeoFGOalJVjJGL__s12iS0hcZpiIABRuhw8bjpQuCO7z4sanTXmocDN4Gd-hs8OlUup3Ga31ouff4LQbhdItNiHi73-loJXeux9u-bXU3NLwO3lmvecSfNsmgHU-dlbbrsfWY46cBv0FXhrukJ785Rh_Pi_f5S7baLF_nj6tMAqloBnXOCzO8VTEhC1WDoeUMODOSSMqKUklGZooZkRdKmEpKIaGCSpXAQXFRF2N0f74rY0gpatPso2157BsgzUlac5LWnKUN9N2Z3lmv-Lf9Fz4CQH1s0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Global Existence of Solutions of the Neumann Problem for Spherically Symmetric Nonlinear Viscoelasticity in a Ball</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Gawinecki, Jerzy A. ; Zajączkowski, Wojciech M.</creator><contributor>Akrivis, G. ; Wang, L. ; Zhu, C.</contributor><creatorcontrib>Gawinecki, Jerzy A. ; Zajączkowski, Wojciech M. ; Akrivis, G. ; Wang, L. ; Zhu, C.</creatorcontrib><description>We examine spherically symmetric solutions to the viscoelasticity system in a ball with the Neumann boundary conditions. Imposing some growth restrictions on the nonlinear part of the stress tensor, we prove the existence of global regular solutions for large data in the weighted Sobolev spaces, where the weight is a power function of the distance to the centre of the ball. First, we prove a global a priori estimate. Then existence is proved by the method of successive approximations and appropriate time extension.</description><identifier>ISSN: 2090-4665</identifier><identifier>EISSN: 2090-4665</identifier><identifier>DOI: 10.1155/2013/268505</identifier><language>eng</language><publisher>Hindawi Publishing Corporation</publisher><ispartof>ISRN mathematical analysis, 2013-03, Vol.2013, p.1-13</ispartof><rights>Copyright © 2013 Jerzy A. Gawinecki and Wojciech M. Zajączkowski.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1085-192a3f01386bc3d91f5471a6fc0c5634dc607d6fb23dbf8ccbc1818d41a1dab93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><contributor>Akrivis, G.</contributor><contributor>Wang, L.</contributor><contributor>Zhu, C.</contributor><creatorcontrib>Gawinecki, Jerzy A.</creatorcontrib><creatorcontrib>Zajączkowski, Wojciech M.</creatorcontrib><title>On Global Existence of Solutions of the Neumann Problem for Spherically Symmetric Nonlinear Viscoelasticity in a Ball</title><title>ISRN mathematical analysis</title><description>We examine spherically symmetric solutions to the viscoelasticity system in a ball with the Neumann boundary conditions. Imposing some growth restrictions on the nonlinear part of the stress tensor, we prove the existence of global regular solutions for large data in the weighted Sobolev spaces, where the weight is a power function of the distance to the centre of the ball. First, we prove a global a priori estimate. Then existence is proved by the method of successive approximations and appropriate time extension.</description><issn>2090-4665</issn><issn>2090-4665</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kE1LAzEQhoMoWGpP_oGclbWZ3U26e9RSq1Baoep1ySeNZJOSbNH9991SD56cyzsvPAzMg9AtkAcASqc5gWKas4oSeoFGOalJVjJGL__s12iS0hcZpiIABRuhw8bjpQuCO7z4sanTXmocDN4Gd-hs8OlUup3Ga31ouff4LQbhdItNiHi73-loJXeux9u-bXU3NLwO3lmvecSfNsmgHU-dlbbrsfWY46cBv0FXhrukJ785Rh_Pi_f5S7baLF_nj6tMAqloBnXOCzO8VTEhC1WDoeUMODOSSMqKUklGZooZkRdKmEpKIaGCSpXAQXFRF2N0f74rY0gpatPso2157BsgzUlac5LWnKUN9N2Z3lmv-Lf9Fz4CQH1s0Q</recordid><startdate>20130312</startdate><enddate>20130312</enddate><creator>Gawinecki, Jerzy A.</creator><creator>Zajączkowski, Wojciech M.</creator><general>Hindawi Publishing Corporation</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130312</creationdate><title>On Global Existence of Solutions of the Neumann Problem for Spherically Symmetric Nonlinear Viscoelasticity in a Ball</title><author>Gawinecki, Jerzy A. ; Zajączkowski, Wojciech M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1085-192a3f01386bc3d91f5471a6fc0c5634dc607d6fb23dbf8ccbc1818d41a1dab93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gawinecki, Jerzy A.</creatorcontrib><creatorcontrib>Zajączkowski, Wojciech M.</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><jtitle>ISRN mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gawinecki, Jerzy A.</au><au>Zajączkowski, Wojciech M.</au><au>Akrivis, G.</au><au>Wang, L.</au><au>Zhu, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Global Existence of Solutions of the Neumann Problem for Spherically Symmetric Nonlinear Viscoelasticity in a Ball</atitle><jtitle>ISRN mathematical analysis</jtitle><date>2013-03-12</date><risdate>2013</risdate><volume>2013</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>2090-4665</issn><eissn>2090-4665</eissn><abstract>We examine spherically symmetric solutions to the viscoelasticity system in a ball with the Neumann boundary conditions. Imposing some growth restrictions on the nonlinear part of the stress tensor, we prove the existence of global regular solutions for large data in the weighted Sobolev spaces, where the weight is a power function of the distance to the centre of the ball. First, we prove a global a priori estimate. Then existence is proved by the method of successive approximations and appropriate time extension.</abstract><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2013/268505</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2090-4665 |
ispartof | ISRN mathematical analysis, 2013-03, Vol.2013, p.1-13 |
issn | 2090-4665 2090-4665 |
language | eng |
recordid | cdi_crossref_primary_10_1155_2013_268505 |
source | Free E-Journal (出版社公開部分のみ) |
title | On Global Existence of Solutions of the Neumann Problem for Spherically Symmetric Nonlinear Viscoelasticity in a Ball |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_hinda&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Global%20Existence%20of%20Solutions%20of%20the%20Neumann%20Problem%20for%20Spherically%20Symmetric%20Nonlinear%20Viscoelasticity%20in%20a%20Ball&rft.jtitle=ISRN%20mathematical%20analysis&rft.au=Gawinecki,%20Jerzy%20A.&rft.date=2013-03-12&rft.volume=2013&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=2090-4665&rft.eissn=2090-4665&rft_id=info:doi/10.1155/2013/268505&rft_dat=%3Ccrossref_hinda%3E10_1155_2013_268505%3C/crossref_hinda%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |