On Global Existence of Solutions of the Neumann Problem for Spherically Symmetric Nonlinear Viscoelasticity in a Ball

We examine spherically symmetric solutions to the viscoelasticity system in a ball with the Neumann boundary conditions. Imposing some growth restrictions on the nonlinear part of the stress tensor, we prove the existence of global regular solutions for large data in the weighted Sobolev spaces, whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISRN mathematical analysis 2013-03, Vol.2013, p.1-13
Hauptverfasser: Gawinecki, Jerzy A., Zajączkowski, Wojciech M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title ISRN mathematical analysis
container_volume 2013
creator Gawinecki, Jerzy A.
Zajączkowski, Wojciech M.
description We examine spherically symmetric solutions to the viscoelasticity system in a ball with the Neumann boundary conditions. Imposing some growth restrictions on the nonlinear part of the stress tensor, we prove the existence of global regular solutions for large data in the weighted Sobolev spaces, where the weight is a power function of the distance to the centre of the ball. First, we prove a global a priori estimate. Then existence is proved by the method of successive approximations and appropriate time extension.
doi_str_mv 10.1155/2013/268505
format Article
fullrecord <record><control><sourceid>crossref_hinda</sourceid><recordid>TN_cdi_crossref_primary_10_1155_2013_268505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1155_2013_268505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1085-192a3f01386bc3d91f5471a6fc0c5634dc607d6fb23dbf8ccbc1818d41a1dab93</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGpP_oGclbWZ3U26e9RSq1Baoep1ySeNZJOSbNH9991SD56cyzsvPAzMg9AtkAcASqc5gWKas4oSeoFGOalJVjJGL__s12iS0hcZpiIABRuhw8bjpQuCO7z4sanTXmocDN4Gd-hs8OlUup3Ga31ouff4LQbhdItNiHi73-loJXeux9u-bXU3NLwO3lmvecSfNsmgHU-dlbbrsfWY46cBv0FXhrukJ785Rh_Pi_f5S7baLF_nj6tMAqloBnXOCzO8VTEhC1WDoeUMODOSSMqKUklGZooZkRdKmEpKIaGCSpXAQXFRF2N0f74rY0gpatPso2157BsgzUlac5LWnKUN9N2Z3lmv-Lf9Fz4CQH1s0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Global Existence of Solutions of the Neumann Problem for Spherically Symmetric Nonlinear Viscoelasticity in a Ball</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Gawinecki, Jerzy A. ; Zajączkowski, Wojciech M.</creator><contributor>Akrivis, G. ; Wang, L. ; Zhu, C.</contributor><creatorcontrib>Gawinecki, Jerzy A. ; Zajączkowski, Wojciech M. ; Akrivis, G. ; Wang, L. ; Zhu, C.</creatorcontrib><description>We examine spherically symmetric solutions to the viscoelasticity system in a ball with the Neumann boundary conditions. Imposing some growth restrictions on the nonlinear part of the stress tensor, we prove the existence of global regular solutions for large data in the weighted Sobolev spaces, where the weight is a power function of the distance to the centre of the ball. First, we prove a global a priori estimate. Then existence is proved by the method of successive approximations and appropriate time extension.</description><identifier>ISSN: 2090-4665</identifier><identifier>EISSN: 2090-4665</identifier><identifier>DOI: 10.1155/2013/268505</identifier><language>eng</language><publisher>Hindawi Publishing Corporation</publisher><ispartof>ISRN mathematical analysis, 2013-03, Vol.2013, p.1-13</ispartof><rights>Copyright © 2013 Jerzy A. Gawinecki and Wojciech M. Zajączkowski.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1085-192a3f01386bc3d91f5471a6fc0c5634dc607d6fb23dbf8ccbc1818d41a1dab93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><contributor>Akrivis, G.</contributor><contributor>Wang, L.</contributor><contributor>Zhu, C.</contributor><creatorcontrib>Gawinecki, Jerzy A.</creatorcontrib><creatorcontrib>Zajączkowski, Wojciech M.</creatorcontrib><title>On Global Existence of Solutions of the Neumann Problem for Spherically Symmetric Nonlinear Viscoelasticity in a Ball</title><title>ISRN mathematical analysis</title><description>We examine spherically symmetric solutions to the viscoelasticity system in a ball with the Neumann boundary conditions. Imposing some growth restrictions on the nonlinear part of the stress tensor, we prove the existence of global regular solutions for large data in the weighted Sobolev spaces, where the weight is a power function of the distance to the centre of the ball. First, we prove a global a priori estimate. Then existence is proved by the method of successive approximations and appropriate time extension.</description><issn>2090-4665</issn><issn>2090-4665</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kE1LAzEQhoMoWGpP_oGclbWZ3U26e9RSq1Baoep1ySeNZJOSbNH9991SD56cyzsvPAzMg9AtkAcASqc5gWKas4oSeoFGOalJVjJGL__s12iS0hcZpiIABRuhw8bjpQuCO7z4sanTXmocDN4Gd-hs8OlUup3Ga31ouff4LQbhdItNiHi73-loJXeux9u-bXU3NLwO3lmvecSfNsmgHU-dlbbrsfWY46cBv0FXhrukJ785Rh_Pi_f5S7baLF_nj6tMAqloBnXOCzO8VTEhC1WDoeUMODOSSMqKUklGZooZkRdKmEpKIaGCSpXAQXFRF2N0f74rY0gpatPso2157BsgzUlac5LWnKUN9N2Z3lmv-Lf9Fz4CQH1s0Q</recordid><startdate>20130312</startdate><enddate>20130312</enddate><creator>Gawinecki, Jerzy A.</creator><creator>Zajączkowski, Wojciech M.</creator><general>Hindawi Publishing Corporation</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130312</creationdate><title>On Global Existence of Solutions of the Neumann Problem for Spherically Symmetric Nonlinear Viscoelasticity in a Ball</title><author>Gawinecki, Jerzy A. ; Zajączkowski, Wojciech M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1085-192a3f01386bc3d91f5471a6fc0c5634dc607d6fb23dbf8ccbc1818d41a1dab93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gawinecki, Jerzy A.</creatorcontrib><creatorcontrib>Zajączkowski, Wojciech M.</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><jtitle>ISRN mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gawinecki, Jerzy A.</au><au>Zajączkowski, Wojciech M.</au><au>Akrivis, G.</au><au>Wang, L.</au><au>Zhu, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Global Existence of Solutions of the Neumann Problem for Spherically Symmetric Nonlinear Viscoelasticity in a Ball</atitle><jtitle>ISRN mathematical analysis</jtitle><date>2013-03-12</date><risdate>2013</risdate><volume>2013</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>2090-4665</issn><eissn>2090-4665</eissn><abstract>We examine spherically symmetric solutions to the viscoelasticity system in a ball with the Neumann boundary conditions. Imposing some growth restrictions on the nonlinear part of the stress tensor, we prove the existence of global regular solutions for large data in the weighted Sobolev spaces, where the weight is a power function of the distance to the centre of the ball. First, we prove a global a priori estimate. Then existence is proved by the method of successive approximations and appropriate time extension.</abstract><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2013/268505</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2090-4665
ispartof ISRN mathematical analysis, 2013-03, Vol.2013, p.1-13
issn 2090-4665
2090-4665
language eng
recordid cdi_crossref_primary_10_1155_2013_268505
source Free E-Journal (出版社公開部分のみ)
title On Global Existence of Solutions of the Neumann Problem for Spherically Symmetric Nonlinear Viscoelasticity in a Ball
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_hinda&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Global%20Existence%20of%20Solutions%20of%20the%20Neumann%20Problem%20for%20Spherically%20Symmetric%20Nonlinear%20Viscoelasticity%20in%20a%20Ball&rft.jtitle=ISRN%20mathematical%20analysis&rft.au=Gawinecki,%20Jerzy%20A.&rft.date=2013-03-12&rft.volume=2013&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=2090-4665&rft.eissn=2090-4665&rft_id=info:doi/10.1155/2013/268505&rft_dat=%3Ccrossref_hinda%3E10_1155_2013_268505%3C/crossref_hinda%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true