On Global Existence of Solutions of the Neumann Problem for Spherically Symmetric Nonlinear Viscoelasticity in a Ball
We examine spherically symmetric solutions to the viscoelasticity system in a ball with the Neumann boundary conditions. Imposing some growth restrictions on the nonlinear part of the stress tensor, we prove the existence of global regular solutions for large data in the weighted Sobolev spaces, whe...
Gespeichert in:
Veröffentlicht in: | ISRN mathematical analysis 2013-03, Vol.2013, p.1-13 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We examine spherically symmetric solutions to the viscoelasticity system in a ball with the Neumann boundary conditions. Imposing some growth restrictions on the nonlinear part of the stress tensor, we prove the existence of global regular solutions for large data in the weighted Sobolev spaces, where the weight is a power function of the distance to the centre of the ball. First, we prove a global a priori estimate. Then existence is proved by the method of successive approximations and appropriate time extension. |
---|---|
ISSN: | 2090-4665 2090-4665 |
DOI: | 10.1155/2013/268505 |