Affine-Invariant Feature Extraction for Activity Recognition

We propose an innovative approach for human activity recognition based on affine-invariant shape representation and SVM-based feature classification. In this approach, a compact computationally efficient affine-invariant representation of action shapes is developed by using affine moment invariants....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISRN machine vision 2013-07, Vol.2013, p.1-7
Hauptverfasser: Sadek, Samy, Al-Hamadi, Ayoub, Krell, Gerald, Michaelis, Bernd
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose an innovative approach for human activity recognition based on affine-invariant shape representation and SVM-based feature classification. In this approach, a compact computationally efficient affine-invariant representation of action shapes is developed by using affine moment invariants. Dynamic affine invariants are derived from the 3D spatiotemporal action volume and the average image created from the 3D volume and classified by an SVM classifier. On two standard benchmark action datasets (KTH and Weizmann datasets), the approach yields promising results that compare favorably with those previously reported in the literature, while maintaining real-time performance.
ISSN:2090-780X
2090-780X
DOI:10.1155/2013/215195