Accelerated Circulant and Skew Circulant Splitting Methods for Hermitian Positive Definite Toeplitz Systems
We study the CSCS method for large Hermitian positive definite Toeplitz linear systems, which first appears in Ng's paper published in (Ng, 2003), and CSCS stands for circulant and skew circulant splitting of the coefficient matrix A. In this paper, we present a new iteration method for the num...
Gespeichert in:
Veröffentlicht in: | Advances in Numerical Analysis 2012-12, Vol.2012 (2012), p.1-17-016 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the CSCS method for large Hermitian positive definite Toeplitz linear systems, which first appears in Ng's paper published in (Ng, 2003), and CSCS stands for circulant and skew circulant splitting of the coefficient matrix A. In this paper, we present a new iteration method for the numerical solution of Hermitian positive definite Toeplitz systems of linear equations. The method is a two-parameter generation of the CSCS method such that when the two parameters involved are equal, it coincides with the CSCS method. We discuss the convergence property and optimal parameters of this method. Finally, we extend our method to BTTB matrices. Numerical experiments are presented to show the effectiveness of our new method. |
---|---|
ISSN: | 1687-9562 1687-9562 |
DOI: | 10.1155/2012/973407 |