Accelerated Circulant and Skew Circulant Splitting Methods for Hermitian Positive Definite Toeplitz Systems

We study the CSCS method for large Hermitian positive definite Toeplitz linear systems, which first appears in Ng's paper published in (Ng, 2003), and CSCS stands for circulant and skew circulant splitting of the coefficient matrix A. In this paper, we present a new iteration method for the num...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Numerical Analysis 2012-12, Vol.2012 (2012), p.1-17-016
Hauptverfasser: Akhondi, N., Toutounian, F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the CSCS method for large Hermitian positive definite Toeplitz linear systems, which first appears in Ng's paper published in (Ng, 2003), and CSCS stands for circulant and skew circulant splitting of the coefficient matrix A. In this paper, we present a new iteration method for the numerical solution of Hermitian positive definite Toeplitz systems of linear equations. The method is a two-parameter generation of the CSCS method such that when the two parameters involved are equal, it coincides with the CSCS method. We discuss the convergence property and optimal parameters of this method. Finally, we extend our method to BTTB matrices. Numerical experiments are presented to show the effectiveness of our new method.
ISSN:1687-9562
1687-9562
DOI:10.1155/2012/973407