Predicting Global Solar Radiation Using an Artificial Neural Network Single-Parameter Model

We used five years of global solar radiation data to estimate the monthly average of daily global solar irradiation on a horizontal surface based on a single parameter, sunshine hours, using the artificial neural network method. The station under the study is located in Kampala, Uganda at a latitude...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in artificial neural systems 2011-11, Vol.2011 (2011), p.1-7
Hauptverfasser: Angela, Karoro, Taddeo, Ssenyonga, Mubiru, James
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We used five years of global solar radiation data to estimate the monthly average of daily global solar irradiation on a horizontal surface based on a single parameter, sunshine hours, using the artificial neural network method. The station under the study is located in Kampala, Uganda at a latitude of 0.19°N, a longitude of 32.34°E, and an altitude of 1200 m above sea level. The five-year data was split into two parts in 2003–2006 and 2007-2008; the first part was used for training, and the latter was used for testing the neural network. Amongst the models tested, the feed-forward back-propagation network with one hidden layer (65 neurons) and with the tangent sigmoid as the transfer function emerged as the more appropriate model. Results obtained using the proposed model showed good agreement between the estimated and actual values of global solar irradiation. A correlation coefficient of 0.963 was obtained with a mean bias error of 0.055 MJ/m2 and a root mean square error of 0.521 MJ/m2. The single-parameter ANN model shows promise for estimating global solar irradiation at places where monitoring stations are not established and stations where we have one common parameter (sunshine hours).
ISSN:1687-7594
1687-7608
DOI:10.1155/2011/751908