Chaotic Image Encryption Design Using Tompkins-Paige Algorithm

In this paper, we have presented a new permutation-substitution image encryption architecture using chaotic maps and Tompkins-Paige algorithm. The proposed encryption system includes two major parts, chaotic pixels permutation and chaotic pixels substitution. A logistic map is used to generate a bit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Problems in Engineering 2009-01, Vol.2009 (1), p.821-842-148
Hauptverfasser: Etemadi Borujeni, Shahram, Eshghi, Mohammad
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we have presented a new permutation-substitution image encryption architecture using chaotic maps and Tompkins-Paige algorithm. The proposed encryption system includes two major parts, chaotic pixels permutation and chaotic pixels substitution. A logistic map is used to generate a bit sequence, which is used to generate pseudorandom numbers in Tompkins-Paige algorithm, in 2D permutation phase. Pixel substitution phase includes two process, the tent pseudorandom image (TPRI) generator and modulo addition operation. All parts of the proposed chaotic encryption system are simulated. Uniformity of the histogram of the proposed encrypted image is justified using the chi-square test, which is less than χ2(255, 0.05). The vertical, horizontal, and diagonal correlation coefficients, as well as their average and RMS values for the proposed encrypted image are calculated that is about 13% less than previous researches. To quantify the difference between the encrypted image and the corresponding plain-image, three measures are used. These are MAE, NPCR, and UACI, which are improved in our proposed system considerably. NPCR of our proposed system is exactly the ideal value of this criterion. The key space of our proposed method is large enough to protect the system against any Brute-force and statistical attacks.
ISSN:1024-123X
1563-5147
DOI:10.1155/2009/762652