Differential expression, distribution, and function of PPAR-gamma in the proximal and distal colon
Suppression of colon carcinogenesis by peroxisome proliferator-activated receptor (PPAR)-gamma is likely due to some effect of PPAR-gamma on normal colonic epithelial cells. However, our understanding of the effects of PPAR-gamma in such cells is limited. We analyzed the abundance, distribution, and...
Gespeichert in:
Veröffentlicht in: | Physiological genomics 2007-08, Vol.30 (3), p.342-353 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Suppression of colon carcinogenesis by peroxisome proliferator-activated receptor (PPAR)-gamma is likely due to some effect of PPAR-gamma on normal colonic epithelial cells. However, our understanding of the effects of PPAR-gamma in such cells is limited. We analyzed the abundance, distribution, and function of PPAR-gamma in epithelial cells isolated from the murine proximal and distal colon. Marked differences in PPAR-gamma abundance and distribution were observed, suggesting tissue-specific responses. Analysis of PPAR-gamma effects on DNA synthesis, formation of preneoplastic lesions, and activation of MAPK signaling in proximal and distal colonic epithelial cells in vivo indicates that PPAR-gamma regulates both tissue-specific and common responses within the proximal and distal colon. Three major functional cohorts of PPAR-gamma target genes were identified by genomic profiling of isolated colonic epithelial cells: genes that are involved in metabolism, in signaling, and in cellular adhesion and motility. Two subsets of PPAR-gamma target genes were differentially expressed in the proximal and distal epithelium. Proximal target genes were primarily involved in metabolic activities, whereas signal transduction, adhesion, and motility targets were more pronounced in the distal colon. Remarkably, those target genes that are differentially expressed in the proximal colon were all induced on activation of PPAR-gamma, whereas all target genes that are preferentially expressed in the distal colon were repressed. Our data indicate that PPAR-gamma exerts both common and tissue-specific effects in the colon and challenge the general conclusions that PPAR-gamma is induced on differentiation of colonic epithelial cells and that this receptor stimulates differentiated function in epithelial cells throughout the colon. |
---|---|
ISSN: | 1094-8341 1531-2267 |
DOI: | 10.1152/physiolgenomics.00042.2007 |