Facilitation of Corticostriatal Plasticity by the Amygdala Requires Ca 2+ -Induced Ca 2+ Release in the Ventral Striatum
Motor learning and habit formation are thought to depend on corticostriatal synaptic plasticity. Moreover, basolateral amygdala (BLA) activity facilitates consolidation of striatal-dependent memories. Accordingly, BLA stimulation in vitro facilitates long-term potentiation (LTP) induction at cortico...
Gespeichert in:
Veröffentlicht in: | Journal of neurophysiology 2010-09, Vol.104 (3), p.1673-1680 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motor learning and habit formation are thought to depend on corticostriatal synaptic plasticity. Moreover, basolateral amygdala (BLA) activity facilitates consolidation of striatal-dependent memories. Accordingly, BLA stimulation in vitro facilitates long-term potentiation (LTP) induction at corticostriatal synapses onto medium spiny neurons (MSNs). Although these effects were found to depend on N-methyl-d-aspartate (NMDA) receptor activation at BLA synapses and consequent Ca
2+
influx, it is unclear how this event can facilitate LTP at cortical synapses, even when the two inputs are not coactivated. Here, we aimed to shed light on this question, using whole cell recordings of MSNs in vitro. We first tested whether BLA inputs end at more proximal dendritic sites than cortical inputs. In this scenario, BLA synapses would experience stronger spike-related depolarizations and be in a strategic position to control the spread of second messengers. However, comparison of compound excitatory postsynaptic potentials and single-axon excitatory postsynaptic currents revealed that BLA and cortical synapses are intermingled. Next, we examined the sensitivity of cortical and BLA NMDA responses to ifenprodil because NR2A-containing NMDA receptors have faster kinetics than those containing NR2B subunits. However, the two inputs did not differ in this respect. Last, reasoning that propagating waves of Ca
2+
-induced Ca
2+
release (CICR) could bridge temporal gaps between the two inputs, we tested the effects of CICR inhibitors on the BLA facilitation of corticostriatal LTP induction. Pharmacological interference with CICR blocked corticostriatal LTP induction. Thus our results are consistent with the notion that NMDA-dependent Ca
2+
influx at BLA synapses initiates propagating waves of CICR, thereby biasing active corticostriatal inputs toward synaptic potentiation. |
---|---|
ISSN: | 0022-3077 1522-1598 |
DOI: | 10.1152/jn.00233.2010 |