Shock-induced stress induces loss of microvascular endothelial Tie2 in the kidney which is not associated with reduced glomerular barrier function

1 Medical Biology Section, Department of Pathology and Medical Biology, Departments of 2 Critical Care and 3 Anesthesiology, University Medical Center Groningen, University of Groningen; 4 Pharmacokinetics and Drug Delivery, Groningen University Institute for Drug Exploration, Groningen, The Netherl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Renal physiology 2009-08, Vol.297 (2), p.F272-F281
Hauptverfasser: van Meurs, Matijs, Kurniati, Neng F, Wulfert, Francis M, Asgeirsdottir, Sigridur A, de Graaf, Inge A, Satchell, Simon C, Mathieson, Peter W, Jongman, Rianne M, Kumpers, Philipp, Zijlstra, Jan G, Heeringa, Peter, Molema, Grietje
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:1 Medical Biology Section, Department of Pathology and Medical Biology, Departments of 2 Critical Care and 3 Anesthesiology, University Medical Center Groningen, University of Groningen; 4 Pharmacokinetics and Drug Delivery, Groningen University Institute for Drug Exploration, Groningen, The Netherlands. 5 Academic Renal Unit, University of Bristol, Southmead Hospital, Bristol, United Kingdom; and 6 Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany Submitted 9 March 2009 ; accepted in final form 8 June 2009 Both hemorrhagic shock and endotoxemia induce a pronounced vascular activation in the kidney which coincides with albuminuria and glomerular barrier dysfunction. We hypothesized that changes in Tie2, a vascular restricted receptor tyrosine kinase shown to control microvascular integrity and endothelial inflammation, underlie this loss of glomerular barrier function. In healthy murine and human kidney, Tie2 is heterogeneously expressed in all microvascular beds, although to different extents. In mice subjected to hemorrhagic and septic shock, Tie2 mRNA and protein were rapidly, and temporarily, lost from the renal microvasculature, and normalized within 24 h after initiation of the shock insult. The loss of Tie2 protein could not be attributed to shedding as both in mice and healthy volunteers subjected to endotoxemia, sTie2 levels in the systemic circulation did not change. In an attempt to identify the molecular control of Tie2, we activated glomerular endothelial cell cultures and human kidney slices in vitro with LPS or TNF- , but did not observe a change in Tie2 mRNA levels. In parallel to the loss of Tie2 in vivo, an overt influx of neutrophils in the glomerular compartment, which coincided with proteinuria, was seen. As neutrophil-endothelial cell interactions may play a role in endothelial adaptation to shock, and these effects cannot be mimicked in vitro, we depleted neutrophils before shock induction. While this neutrophil depletion abolished proteinuria, Tie2 was not rescued, implying that Tie2 may not be a major factor controlling maintenance of the glomerular filtration barrier in this model. endothelium; hemorrhagic shock; endotoxemia; neutrophil Address for reprint requests and other correspondence: G. Molema, Univ. Medical Center Groningen, Dept. of Pathology and Medical Biology, Medical Biology Section, Internal Postal Code EA11, Hanzeplein 1, 9713 GZ Groningen, The Netherlands (e-mail g.molema{at}med.
ISSN:0363-6127
1931-857X
2161-1157
1522-1466
DOI:10.1152/ajprenal.00137.2009