Activation of NTS A 1 adenosine receptors inhibits regional sympathetic responses evoked by activation of cardiopulmonary chemoreflex
Previously we have shown that adenosine operating via the A 1 receptor subtype may inhibit glutamatergic transmission in the baroreflex arc within the nucleus of the solitary tract (NTS) and differentially increase renal (RSNA), preganglionic adrenal (pre-ASNA), and lumbar (LSNA) sympathetic nerve a...
Gespeichert in:
Veröffentlicht in: | American journal of physiology. Regulatory, integrative and comparative physiology integrative and comparative physiology, 2012-09, Vol.303 (5), p.R539-R550 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Previously we have shown that adenosine operating via the A
1
receptor subtype may inhibit glutamatergic transmission in the baroreflex arc within the nucleus of the solitary tract (NTS) and differentially increase renal (RSNA), preganglionic adrenal (pre-ASNA), and lumbar (LSNA) sympathetic nerve activity (ASNA>RSNA≥LSNA). Since the cardiopulmonary chemoreflex and the arterial baroreflex are mediated via similar medullary pathways, and glutamate is a primary transmitter in both pathways, it is likely that adenosine operating via A
1
receptors in the NTS may differentially inhibit regional sympathetic responses evoked by activation of cardiopulmonary chemoreceptors. Therefore, in urethane-chloralose-anesthetized rats ( n = 37) we compared regional sympathoinhibition evoked by the cardiopulmonary chemoreflex (activated with right atrial injections of serotonin 5HT
3
receptor agonist phenylbiguanide, PBG, 1–8 μg/kg) before and after selective stimulation of NTS A
1
adenosine receptors [microinjections of N
6
-cyclopentyl adenosine (CPA), 0.033–330 pmol/50 nl]. Activation of cardiopulmonary chemoreceptors evoked differential, dose-dependent sympathoinhibition (RSNA>ASNA>LSNA), and decreases in arterial pressure and heart rate. These differential sympathetic responses were uniformly attenuated in dose-dependent manner by microinjections of CPA into the NTS. Volume control ( n = 11) and blockade of adenosine receptor subtypes in the NTS via 8-( p-sulfophenyl)theophylline (8-SPT, 1 nmol in 100 nl) ( n = 9) did not affect the reflex responses. We conclude that activation of NTS A
1
adenosine receptors uniformly inhibits neural and cardiovascular cardiopulmonary chemoreflex responses. A
1
adenosine receptors have no tonic modulatory effect on this reflex under normal conditions. However, when adenosine is released into the NTS (i.e., during stress or severe hypotension/ischemia), it may serve as negative feedback regulator for depressor and sympathoinhibitory reflexes integrated in the NTS. |
---|---|
ISSN: | 0363-6119 1522-1490 |
DOI: | 10.1152/ajpregu.00164.2012 |