Pharmacological nNOS inhibition modified small-conductance Ca 2+ -activated K + channel without altering Ca 2+ dynamics
Atrial fibrillation (AF) is associated with electrical remodeling processes that promote a substrate for the maintenance of AF. Although the small-conductance Ca -activated K (SK) channel is a key factor in atrial electrical remodeling, the mechanism of its activation remains unclear. Regional nitri...
Gespeichert in:
Veröffentlicht in: | American journal of physiology. Heart and circulatory physiology 2022-11, Vol.323 (5), p.H869-H878 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Atrial fibrillation (AF) is associated with electrical remodeling processes that promote a substrate for the maintenance of AF. Although the small-conductance Ca
-activated K
(SK) channel is a key factor in atrial electrical remodeling, the mechanism of its activation remains unclear. Regional nitric oxide (NO) production by neuronal nitric oxide synthase (nNOS) is involved in atrial electrical remodeling. In this study, atrial tachyarrhythmia (ATA) induction and optical mapping were performed on perfused rat hearts. nNOS is pharmacologically inhibited by
-methylthiocitrulline (SMTC). The influence of the SK channel was examined using a specific channel inhibitor, apamin (APA). Parameters such as action potential duration (APD), conduction velocity, and calcium transient (CaT) were evaluated using voltage and calcium optical mapping. The dominant frequency was examined in the analysis of AF dynamics. SMTC (100 nM) increased the inducibility of ATA and apamin (100 nM) mitigated nNOS inhibition-induced arrhythmogenicity. SMTC caused abbreviations and enhanced the spatial dispersion of APD, which was reversed by apamin. By contrast, conduction velocity and other parameters associated with CaT were not affected by SMTC or apamin administration. Apamin reduced the frequency of SMTC-induced ATA. In summary, nNOS inhibition abbreviates APD by modifying the SK channels. A specific SK channel blocker, apamin, mitigated APD abbreviation without alteration of CaT, implying an underlying mechanism of posttranslational modification of SK channels.
We demonstrated that pharmacological nNOS inhibition increased the atrial arrhythmia inducibility and a specific small-conductance Ca
-activated K
channel blocker, apamin, reversed the enhanced atrial arrhythmia inducibility. Apamin mitigated APD abbreviation without alteration of Ca
transient, implying an underlying mechanism of posttranslational modification of SK channels. |
---|---|
ISSN: | 0363-6135 1522-1539 |
DOI: | 10.1152/ajpheart.00252.2022 |