Immune cell β 2 -adrenergic receptors contribute to the development of heart failure

β-Adrenergic receptors (βARs) regulate normal and pathophysiological heart function through their impact on contractility. βARs are also regulators of immune function where they play a unique role depending on the disease condition and immune cell type. Emerging evidence suggests an important role f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Heart and circulatory physiology 2021-10, Vol.321 (4), p.H633-H649
Hauptverfasser: Tanner, Miles A, Maitz, Charles A, Grisanti, Laurel A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:β-Adrenergic receptors (βARs) regulate normal and pathophysiological heart function through their impact on contractility. βARs are also regulators of immune function where they play a unique role depending on the disease condition and immune cell type. Emerging evidence suggests an important role for the β AR subtype in regulating remodeling in the pathological heart; however, the importance of these responses has never been examined. In heart failure, catecholamines are elevated, leading to chronic βAR activation and contributing to the detrimental effects in the heart. We hypothesized that immune cell β AR plays a critical role in the development of heart failure in response to chronic catecholamine elevations through their regulation of immune cell infiltration. To test this, chimeric mice were generated by performing bone marrow transplant (BMT) experiments using wild-type (WT) or β AR knockout (KO) donors. WT and β ARKO BMT mice were chronically administered the βAR agonist isoproterenol. Immune cell recruitment to the heart was examined by histology and flow cytometry. Numerous changes in immune cell recruitment were observed with isoproterenol administration in WT BMT mice including proinflammatory myeloid populations and lymphocytes with macrophages made up the majority of immune cells in the heart and which were absent in β ARKO BMT animal. β ARKO BMT mice had decreased cardiomyocyte death, hypertrophy, and interstitial fibrosis following isoproterenol treatment, culminating in improved function. These findings demonstrate an important role for immune cell β AR expression in the heart's response to chronically elevated catecholamines. Immune cell β -adrenergic receptors (β ARs) are important for proinflammatory macrophage infiltration to the heart in a chronic isoproterenol administration model of heart failure. Mice lacking immune cell β AR have decreased immune cell infiltration to their heart, primarily proinflammatory macrophage populations. This decrease culminated to decreased cardiac injury with lessened cardiomyocyte death, decreased interstitial fibrosis and hypertrophy, and improved function demonstrating that β AR regulation of immune responses plays an important role in the heart's response to persistent βAR stimulation.
ISSN:0363-6135
1522-1539
DOI:10.1152/ajpheart.00243.2021