Cloning and characterization of mouse 5′-AMP-activated protein kinase γ3 subunit

Naturally occurring mutations in the regulatory γ-subunit of 5′-AMP-activated protein kinase (AMPK) can result in pronounced pathological changes that may stem from increases in muscle glycogen levels, making it critical to understand the role(s) of the γ-subunit in AMPK function. In this study we c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American Journal of Physiology: Cell Physiology 2004-02, Vol.286 (2), p.C283-C292
Hauptverfasser: Yu, Haiyan, Fujii, Nobuharu, Hirshman, Michael F., Pomerleau, Jason M., Goodyear, Laurie J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Naturally occurring mutations in the regulatory γ-subunit of 5′-AMP-activated protein kinase (AMPK) can result in pronounced pathological changes that may stem from increases in muscle glycogen levels, making it critical to understand the role(s) of the γ-subunit in AMPK function. In this study we cloned the mouse AMPKγ3 subunit and revealed that there are two transcription start sites, which result in a long form, γ3L (AF525500) and a short form, γ3S (AF525501). AMPKγ3L is the predominant form in mouse and is specifically expressed in mouse skeletal muscle at the protein level. In skeletal muscle, AMPKγ3 shows higher levels of expression in fast-twitch white glycolytic muscle (type IIb) compared with fast-twitch red oxidative glycolytic muscle (type IIa), whereas γ3 is undetectable in soleus muscle, a slow-twitch oxidative muscle with predominantly type I fibers. AMPKγ3 can coimmunoprecipititate with both α and β AMPK subunits. Overexpression of γ3S and γ3L in mouse tibialis anterior muscle in vivo has no effect on α1 and α2 subunit expression and does not alter AMPKα2 catalytic activity. However, γ3S and γ3L overexpression significantly increases AMPKα1 phosphorylation and activity by ∼50%. The increase in AMPKα1 activity is not associated with alterations in glycogen accumulation or glycogen synthase expression. In conclusion, the γ3 subunit of AMPK is highly expressed in fast-twitch glycolytic skeletal muscle, and wild-type γ3 functions in the regulation of α1 catalytic activity, but it is not associated with changes in muscle glycogen concentrations.
ISSN:0363-6143
1522-1563
DOI:10.1152/ajpcell.00319.2003