Utilising Fourier Transform Voltammetry to Advance the Enzyme Electrochemistry Toolkit

Electron transfer and redox chemistry drives life and Biology can provide inspiration for the design of sustainable fuel catalysts that achieve highly active and selective small molecule transformations. In particular, the Parkin group are interested in hydrogenases, 1 biological H 2 -producing enzy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meeting abstracts (Electrochemical Society) 2023-12, Vol.MA2023-02 (52), p.2515-2515
Hauptverfasser: Lloyd-Laney, Henry, Yates, Nicholas, Stapleton, James, Hewson, Alice, Baranska, Natalia, Bond, Alan, Gavaghan, David, Parkin, Alison
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electron transfer and redox chemistry drives life and Biology can provide inspiration for the design of sustainable fuel catalysts that achieve highly active and selective small molecule transformations. In particular, the Parkin group are interested in hydrogenases, 1 biological H 2 -producing enzymes, and lytic polysaccharide monooxygenases (LPMOs), 2, 3 enzymes that breakdown cellulose. We seek to understand how the rate and energetics of electron transfer controls catalysis in such enzymes; 4 to do this we collaborate with the Gavaghan and Bond groups to develop more powerful bioelectrochemical methodologies. 5 This talk will describe our most recent efforts to integrate sinusoidal voltammetry into our enzyme-electrochemistry toolkit. 6, 7 The technique offers advantages in terms of simulation speed, which in turn enables the powerful application of Bayesian statistical analysis to visualise the uncertainty in the modelling approach. However, we still rely on large amplitude Fourier transform voltammetry and direct current methodologies to visualise the Faradaic current and readily define redox reaction parameter bounds. References: [1] H. Adamson, M. Robinson, J. J. Wright, L. A. Flanagan, J. Walton, D. Elton, D. J. Gavaghan, A. M. Bond, M. M. Roessler and A. Parkin, J. Am. Chem. Soc. , 2017, 139 , 10677-10686. [2] P. J. Lindley, A. Parkin, G. J. Davies and P. H. Walton, Faraday Discuss. , 2022, 234 , 336-348. [3] J. Branch, B. S. Rajagopal, A. Paradisi, N. Yates, P. J. Lindley, J. Smith, K. Hollingsworth, W. B. Turnbull, B. Henrissat, A. Parkin, A. Berry and G. R. Hemsworth, Biochem. J. , 2021, 478 , 2927-2944. [4] A. R. Dale-Evans, M. J. Robinson, H. O. Lloyd-Laney, D. J. Gavaghan, A. M. Bond and A. Parkin, Front. Chemistry , 2021, 9 . [5] H. Adamson, A. M. Bond and A. Parkin, Chem. Comm. , 2017, 53 , 9519-9533. [6] H. O. Lloyd-Laney, N. D. J. Yates, M. J. Robinson, A. R. Hewson, J. D. Firth, D. M. Elton, J. Zhang, A. M. Bond, A. Parkin and D. J. Gavaghan, Anal. Chem. , 2021, 93 , 2062-2071. [7] H. O. Lloyd-Laney, N. D. J. Yates, M. J. Robinson, A. R. Hewson, J. Branch, G. R. Hemsworth, A. M. Bond, A. Parkin and D. J. Gavaghan, Journal of Electroanalytical Chemistry , 2023, 935 , 117264.
ISSN:2151-2043
2151-2035
DOI:10.1149/MA2023-02522515mtgabs