(Invited) Lowering the Noble Metal Requirement for PEM Water Electrolysis: Membrane Electrode Assembly and Porous Transport Layer Design Considerations

The Net Zero Emission scenario proposed by the International Energy Agency projects a required electrolytic generation of hydrogen equivalent to 3600 GW by 2050 [1], averaging to an annual installation of ~130 GW/a between 2023 and 2050. If this were to be provided by proton exchange membrane based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meeting abstracts (Electrochemical Society) 2023-08, Vol.MA2023-01 (36), p.1993-1993
Hauptverfasser: Bernt, Maximilian, Ernst, Matthias Felix, Gasteiger, Hubert A., Kornherr, Matthias, Meier, Vivian, Möckl, Maximilian, Schramm, Carina
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Net Zero Emission scenario proposed by the International Energy Agency projects a required electrolytic generation of hydrogen equivalent to 3600 GW by 2050 [1], averaging to an annual installation of ~130 GW/a between 2023 and 2050. If this were to be provided by proton exchange membrane based water electrolyzers (PEM-WEs) based on platinum catalysts for the hydrogen evolution reaction (HER) and iridium catalysts for the oxygen evolution reaction (OER), the current PEM-WE noble metal requirements of ~0.7 g Ir /kW and ~0.3 g Pt /kW [1] would have to be drastically reduced in view of the noble metal supply constraints. As argued previously, for PEM-WEs to be sustainable on such a large scale would require to achieve platinum and iridium loadings of ~0.05 mg/cm 2 electrode [2,3]. While the former can be easily achieved due to the fast HER kinetics on Pt, the latter requires either ultra-thin OER catalyst layers or improved OER catalysts with a substantially reduced iridium packing density (in units of g Ir /cm 3 electrode ) [2], like the recently developed catalyst with a hydrous iridium oxide shell supported on a titanium oxide core (IrO x /TiO 2 ) [4,5]. In this contribution, we will discuss the effect of the design of membrane electrode assemblies (MEAs) and of the adjacent porous transport layers on PEM-WE performance. In general, the preparation of MEAs with low platinum loading cathodes is straightforward, due to the availability of carbon supported platinum catalysts (Pt/C) with a low Pt packing density. For the optimization of the ionomer content in the cathode electrode, however, its effect on the high current density performance and on the hydrogen permeation rate from cathode to anode have to be considered [6,7]. With regards to the anode electrode, we will further discuss the MEA design challenges when targeting ultra-low iridium loadings. In the case of the ultra-thin catalyst layers that result when using conventional OER catalysts, additional contact resistances between the anode catalyst layer and the titanium based porous transport layer (Ti-PTL) are observed [2]. As will be shown, these can be largely mitigated by the use of a titanium based microporous layer (MPL) coated on the Ti-PTL, highlighting the importance of the interface between the PTL and the anode catalyst layer. In case of using the above described IrO x /TiO 2 catalysts with low iridium packing density, their typically lower electrical conductivity also results in apparen
ISSN:2151-2043
2151-2035
DOI:10.1149/MA2023-01361993mtgabs