A Promising Positive Electrode Material for Na+/Li+ Hybrid-Ionbatteries: Monoclinic-Orthorhombic Na1.1Li2.0V2(PO4)3/C Composite
In this paper, we report a new single death-to-fire Na 1.1 Li 2.0 V 2 (PO 4 ) 3 / C (NLVP / C) compound cathode synthesized from a mono-clinical LVP through a soft ion exchange reaction for use in Na + /Li + hybrid ion batteries. Thermal studies, High Resolution Synchrotron X-ray diffraction (XRD),...
Gespeichert in:
Veröffentlicht in: | Meeting abstracts (Electrochemical Society) 2020-11, Vol.MA2020-02 (68), p.3478-3478 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we report a new single death-to-fire Na
1.1
Li
2.0
V
2
(PO
4
)
3
/ C (NLVP / C) compound cathode synthesized from a mono-clinical LVP through a soft ion exchange reaction for use in Na
+
/Li
+
hybrid ion batteries. Thermal studies, High Resolution Synchrotron X-ray diffraction (XRD), and electrochemical data check the room temperature stabilization of the monoclinic-orthorhombic NLVP / C composite phase. In particular, we report application of monoclinic orthorhombic NLVP / C composite as positive materials in Na half-cell. This monoclinic-orthorhombic NLVP/C composite cathode delivered a discharge capacity of 115 mAh g
−1
with an average discharge potential of 3.47 V. Corresponding in situ synchrotron XRD patterns recorded during initial electrochemical cycling clearly indicate a series of two-phase transitions and confirm the structural stability of the NLVP/C composite cathode during insertion and extraction of the hybrid ions. In addition, the estimated average working potential and energy density at the initial cycle for the monoclinic orthorhombic NLVP/C composite cathode (3.47 V vs Na/Na
+
and 102.5 Wh kg
−1
, respectively) are higher compared with those of the pyro-synthesized rhombohedral Na
3
V
2
(PO
4
)
3
(3.36 V vs Na/Na
+
and 88.5 Wh kg
−1
) cathode. Thus, this study shows the feasibility of using a soft ion-exchange reaction at 150 °C to facilitate the formation of composite phases suitable for rechargeable hybrid-ion battery applications. |
---|---|
ISSN: | 2151-2043 2151-2035 |
DOI: | 10.1149/MA2020-02683478mtgabs |