Novel Silicon Nanowires-Based 3D Anodes for High-Capacity Lithium Ion Batteries

Here, we report on the scalable synthesis and characterization of novel architecture three-dimensional high-capacity amorphous SiNWs-based anodes, with focus on studying their electrochemical degradation mechanisms. We achieved an unprecedented combination of remarkable performance characteristics,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meeting abstracts (Electrochemical Society) 2015-07, Vol.MA2015-03 (2), p.545-545
Hauptverfasser: Peled, Emanuel, Patolsky, Fernando, Golodnitsky, Diana, Freedman, Kathrin, Davidi, Guy, Schneier, Dan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here, we report on the scalable synthesis and characterization of novel architecture three-dimensional high-capacity amorphous SiNWs-based anodes, with focus on studying their electrochemical degradation mechanisms. We achieved an unprecedented combination of remarkable performance characteristics, high loadings of 3-15 mAh/cm 2 , a very low irreversible capacity (10% for the 3-4 mAh/cm 2 anodes), current efficiency greater than 99.5%, cycle stability both in half cells and a LiFePO 4 battery, a total capacity of 457mAh/cm 2 over 204 cycles and fast charge–discharge rates (up to 2.7C at 20mA/cm 2 ). These SiNWs-based binder-free 3D anodes have been cycled for over 200 cycles, exhibiting a stable cycle life. Notably, it was found that the growth of the continuous SEI layer thickness, and its concomitant increase in resistivity, represents the major reason for the observed capacity loss of the SiNWs-based anodes. Importantly, these SiNWs-based anodes of novel architecture meet the requirements of lithium batteries for future portable, and electric-vehicle, applications.
ISSN:2151-2043
2151-2035
DOI:10.1149/MA2015-03/2/545