Analysis of the Oxidation of the V(II) by Dissolved Oxygen Using UV-Visible Spectrophotometry in a Vanadium Redox Flow Battery
In this study, the oxidation of the V(II) by dissolved oxygen was examined quantitatively using UV-visible spectrophotometry. UV-visible spectrophotometry is an accurate method of determining the concentration of vanadium ions at both the negative and positive half-cell electrolytes. To apply Beer...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2013-01, Vol.160 (6), p.A973-A979 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, the oxidation of the V(II) by dissolved oxygen was examined quantitatively using UV-visible spectrophotometry. UV-visible spectrophotometry is an accurate method of determining the concentration of vanadium ions at both the negative and positive half-cell electrolytes. To apply Beer's law, the concentration should be diluted below 0.15 M to achieve a linear relationship between the absorbance and concentration. UV-visible spectrophotometry revealed that the concentration of V(II) in the negative half-cell electrolyte decreases continuously with cycling due to the rapid oxidation of the V(II) by dissolved oxygen. This decrease gives rise to an imbalance between the positive and negative half-cell electrolytes, which results in a significant capacity loss. |
---|---|
ISSN: | 0013-4651 1945-7111 |
DOI: | 10.1149/2.145306jes |