Formation of Porous Anodic Films on Carbon Steels and Their Application to Corrosion Protection Composite Coatings Formed with Polypyrrole

The growth behavior of nanoporous anodic films on carbon steel containing 0.213 mass% carbon has been examined. The films were grown by anodizing in an ethylene glycol (EG) electrolyte containing 0.1 mol dm−3 NH4F and 0.5 mol dm−3 H2O. The steel contains carbide precipitates with sizes in the range...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2016-01, Vol.163 (7), p.C386-C393
Hauptverfasser: Konno, Yoshiki, Farag, Ahmed A., Tsuji, Etsushi, Aoki, Yoshitaka, Habazaki, Hiroki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The growth behavior of nanoporous anodic films on carbon steel containing 0.213 mass% carbon has been examined. The films were grown by anodizing in an ethylene glycol (EG) electrolyte containing 0.1 mol dm−3 NH4F and 0.5 mol dm−3 H2O. The steel contains carbide precipitates with sizes in the range 50-800 nm. The anodic film formed on the carbide phase grew more slowly and was more chemically soluble during anodizing, resulting in submicrometer pits on the anodic film. The nanoporous morphology of the anodic films formed on an α-Fe matrix resembled those formed on iron. Heat treatment of the anodized specimens caused transformation of the chemically soluble fluoride-containing amorphous or poorly crystalline anodic films to crystalline oxide films containing α-Fe2O3 and Fe3O4. Polypyrrole (PPy) was electropolymerized on the transformed surfaces to form a corrosion-protective composite coating. The resultant specimens coated with the composite coating showed improved durability compared to passivated steel with a PPy coating.
ISSN:0013-4651
1945-7111
DOI:10.1149/2.1451607jes