Interfacial Chemistry Control for Performance Enhancement of Micron Tin-Nickel/Graphite Battery Anode

Designing and controlling the anode-electrolyte interfacial chemistry of a micron Sn-Ni/graphite composite battery anode led to the formation of a stable solid electrolyte interphase (SEI) layer. We utilized fluoroethylene carbonate (FEC)-based electrolyte that is more interfacially compatible than...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2014-01, Vol.161 (12), p.A1851-A1859
Hauptverfasser: Hong, Sukhyun, Choo, Myeong-Ho, Kwon, Yo Han, Kim, Je Young, Song, Seung-Wan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page A1859
container_issue 12
container_start_page A1851
container_title Journal of the Electrochemical Society
container_volume 161
creator Hong, Sukhyun
Choo, Myeong-Ho
Kwon, Yo Han
Kim, Je Young
Song, Seung-Wan
description Designing and controlling the anode-electrolyte interfacial chemistry of a micron Sn-Ni/graphite composite battery anode led to the formation of a stable solid electrolyte interphase (SEI) layer. We utilized fluoroethylene carbonate (FEC)-based electrolyte that is more interfacially compatible than an EC-based electrolyte, trimethyl phosphite electrolyte additive that reduces the attack of LiPF6-derived acidic species in the electrolyte, and the addition of a low fraction of SnF2 to anode for capturing the F anions of HF present in the electrolyte. Mechanistic surface chemistry studies using ATR FTIR and X-ray photoelectron spectroscopy revealed that the SnF2 transforms to SnF4 by capturing F anions, while FEC and phosphite provide a surface protective and robust SEI. The interfacially controlled composite anode with a tuned content of graphite exhibits good cycling stability (90% retention at the 50th cycle) with high discharge capacity of ∼800 mAhg−1 of tin, in contrast to a rapid capacity fade in the conventional electrolyte.
doi_str_mv 10.1149/2.0661412jes
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1149_2_0661412jes</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>0661412JES</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-cc33dcaab02ccdba2c3acf6f7543ebabf0c749b3161939de8ef9742ab9fe28a43</originalsourceid><addsrcrecordid>eNptkD1PwzAYhC0EEqWw8QM8MpDWr-18jSUqpVL5GMocOc5r1SWxKzsM_fekKhIL0-l0j06nI-Qe2AxAlnM-Y1kGEvge4wWZQCnTJAeASzJhDEQisxSuyU2M-9FCIfMJwbUbMBilrepotcPexiEcaeXdEHxHjQ_0Y8x96JXTSJdud9Ie3UC9oa9WB-_o1rrkzeov7OaroA47OyB9UsNYfKQL51u8JVdGdRHvfnVKPp-X2-ol2byv1tVik2ieFUOitRCtVqphXOu2UVwLpU1m8lQKbFRjmM5l2QjIoBRliwWaMpdcNaVBXigppuTx3DvOijGgqQ_B9ioca2D16aKa138XjfjDGbf-UO_9d3DjuP_RH5ENaSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interfacial Chemistry Control for Performance Enhancement of Micron Tin-Nickel/Graphite Battery Anode</title><source>IOP Publishing Journals</source><creator>Hong, Sukhyun ; Choo, Myeong-Ho ; Kwon, Yo Han ; Kim, Je Young ; Song, Seung-Wan</creator><creatorcontrib>Hong, Sukhyun ; Choo, Myeong-Ho ; Kwon, Yo Han ; Kim, Je Young ; Song, Seung-Wan</creatorcontrib><description>Designing and controlling the anode-electrolyte interfacial chemistry of a micron Sn-Ni/graphite composite battery anode led to the formation of a stable solid electrolyte interphase (SEI) layer. We utilized fluoroethylene carbonate (FEC)-based electrolyte that is more interfacially compatible than an EC-based electrolyte, trimethyl phosphite electrolyte additive that reduces the attack of LiPF6-derived acidic species in the electrolyte, and the addition of a low fraction of SnF2 to anode for capturing the F anions of HF present in the electrolyte. Mechanistic surface chemistry studies using ATR FTIR and X-ray photoelectron spectroscopy revealed that the SnF2 transforms to SnF4 by capturing F anions, while FEC and phosphite provide a surface protective and robust SEI. The interfacially controlled composite anode with a tuned content of graphite exhibits good cycling stability (90% retention at the 50th cycle) with high discharge capacity of ∼800 mAhg−1 of tin, in contrast to a rapid capacity fade in the conventional electrolyte.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/2.0661412jes</identifier><language>eng</language><publisher>The Electrochemical Society</publisher><ispartof>Journal of the Electrochemical Society, 2014-01, Vol.161 (12), p.A1851-A1859</ispartof><rights>2014 The Electrochemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-cc33dcaab02ccdba2c3acf6f7543ebabf0c749b3161939de8ef9742ab9fe28a43</citedby><cites>FETCH-LOGICAL-c268t-cc33dcaab02ccdba2c3acf6f7543ebabf0c749b3161939de8ef9742ab9fe28a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1149/2.0661412jes/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846</link.rule.ids></links><search><creatorcontrib>Hong, Sukhyun</creatorcontrib><creatorcontrib>Choo, Myeong-Ho</creatorcontrib><creatorcontrib>Kwon, Yo Han</creatorcontrib><creatorcontrib>Kim, Je Young</creatorcontrib><creatorcontrib>Song, Seung-Wan</creatorcontrib><title>Interfacial Chemistry Control for Performance Enhancement of Micron Tin-Nickel/Graphite Battery Anode</title><title>Journal of the Electrochemical Society</title><addtitle>J. Electrochem. Soc</addtitle><description>Designing and controlling the anode-electrolyte interfacial chemistry of a micron Sn-Ni/graphite composite battery anode led to the formation of a stable solid electrolyte interphase (SEI) layer. We utilized fluoroethylene carbonate (FEC)-based electrolyte that is more interfacially compatible than an EC-based electrolyte, trimethyl phosphite electrolyte additive that reduces the attack of LiPF6-derived acidic species in the electrolyte, and the addition of a low fraction of SnF2 to anode for capturing the F anions of HF present in the electrolyte. Mechanistic surface chemistry studies using ATR FTIR and X-ray photoelectron spectroscopy revealed that the SnF2 transforms to SnF4 by capturing F anions, while FEC and phosphite provide a surface protective and robust SEI. The interfacially controlled composite anode with a tuned content of graphite exhibits good cycling stability (90% retention at the 50th cycle) with high discharge capacity of ∼800 mAhg−1 of tin, in contrast to a rapid capacity fade in the conventional electrolyte.</description><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkD1PwzAYhC0EEqWw8QM8MpDWr-18jSUqpVL5GMocOc5r1SWxKzsM_fekKhIL0-l0j06nI-Qe2AxAlnM-Y1kGEvge4wWZQCnTJAeASzJhDEQisxSuyU2M-9FCIfMJwbUbMBilrepotcPexiEcaeXdEHxHjQ_0Y8x96JXTSJdud9Ie3UC9oa9WB-_o1rrkzeov7OaroA47OyB9UsNYfKQL51u8JVdGdRHvfnVKPp-X2-ol2byv1tVik2ieFUOitRCtVqphXOu2UVwLpU1m8lQKbFRjmM5l2QjIoBRliwWaMpdcNaVBXigppuTx3DvOijGgqQ_B9ioca2D16aKa138XjfjDGbf-UO_9d3DjuP_RH5ENaSY</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Hong, Sukhyun</creator><creator>Choo, Myeong-Ho</creator><creator>Kwon, Yo Han</creator><creator>Kim, Je Young</creator><creator>Song, Seung-Wan</creator><general>The Electrochemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140101</creationdate><title>Interfacial Chemistry Control for Performance Enhancement of Micron Tin-Nickel/Graphite Battery Anode</title><author>Hong, Sukhyun ; Choo, Myeong-Ho ; Kwon, Yo Han ; Kim, Je Young ; Song, Seung-Wan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-cc33dcaab02ccdba2c3acf6f7543ebabf0c749b3161939de8ef9742ab9fe28a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Sukhyun</creatorcontrib><creatorcontrib>Choo, Myeong-Ho</creatorcontrib><creatorcontrib>Kwon, Yo Han</creatorcontrib><creatorcontrib>Kim, Je Young</creatorcontrib><creatorcontrib>Song, Seung-Wan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Sukhyun</au><au>Choo, Myeong-Ho</au><au>Kwon, Yo Han</au><au>Kim, Je Young</au><au>Song, Seung-Wan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial Chemistry Control for Performance Enhancement of Micron Tin-Nickel/Graphite Battery Anode</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J. Electrochem. Soc</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>161</volume><issue>12</issue><spage>A1851</spage><epage>A1859</epage><pages>A1851-A1859</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><abstract>Designing and controlling the anode-electrolyte interfacial chemistry of a micron Sn-Ni/graphite composite battery anode led to the formation of a stable solid electrolyte interphase (SEI) layer. We utilized fluoroethylene carbonate (FEC)-based electrolyte that is more interfacially compatible than an EC-based electrolyte, trimethyl phosphite electrolyte additive that reduces the attack of LiPF6-derived acidic species in the electrolyte, and the addition of a low fraction of SnF2 to anode for capturing the F anions of HF present in the electrolyte. Mechanistic surface chemistry studies using ATR FTIR and X-ray photoelectron spectroscopy revealed that the SnF2 transforms to SnF4 by capturing F anions, while FEC and phosphite provide a surface protective and robust SEI. The interfacially controlled composite anode with a tuned content of graphite exhibits good cycling stability (90% retention at the 50th cycle) with high discharge capacity of ∼800 mAhg−1 of tin, in contrast to a rapid capacity fade in the conventional electrolyte.</abstract><pub>The Electrochemical Society</pub><doi>10.1149/2.0661412jes</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2014-01, Vol.161 (12), p.A1851-A1859
issn 0013-4651
1945-7111
language eng
recordid cdi_crossref_primary_10_1149_2_0661412jes
source IOP Publishing Journals
title Interfacial Chemistry Control for Performance Enhancement of Micron Tin-Nickel/Graphite Battery Anode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A32%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20Chemistry%20Control%20for%20Performance%20Enhancement%20of%20Micron%20Tin-Nickel/Graphite%20Battery%20Anode&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Hong,%20Sukhyun&rft.date=2014-01-01&rft.volume=161&rft.issue=12&rft.spage=A1851&rft.epage=A1859&rft.pages=A1851-A1859&rft.issn=0013-4651&rft.eissn=1945-7111&rft_id=info:doi/10.1149/2.0661412jes&rft_dat=%3Ciop_cross%3E0661412JES%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true