Interfacial Chemistry Control for Performance Enhancement of Micron Tin-Nickel/Graphite Battery Anode
Designing and controlling the anode-electrolyte interfacial chemistry of a micron Sn-Ni/graphite composite battery anode led to the formation of a stable solid electrolyte interphase (SEI) layer. We utilized fluoroethylene carbonate (FEC)-based electrolyte that is more interfacially compatible than...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2014-01, Vol.161 (12), p.A1851-A1859 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Designing and controlling the anode-electrolyte interfacial chemistry of a micron Sn-Ni/graphite composite battery anode led to the formation of a stable solid electrolyte interphase (SEI) layer. We utilized fluoroethylene carbonate (FEC)-based electrolyte that is more interfacially compatible than an EC-based electrolyte, trimethyl phosphite electrolyte additive that reduces the attack of LiPF6-derived acidic species in the electrolyte, and the addition of a low fraction of SnF2 to anode for capturing the F anions of HF present in the electrolyte. Mechanistic surface chemistry studies using ATR FTIR and X-ray photoelectron spectroscopy revealed that the SnF2 transforms to SnF4 by capturing F anions, while FEC and phosphite provide a surface protective and robust SEI. The interfacially controlled composite anode with a tuned content of graphite exhibits good cycling stability (90% retention at the 50th cycle) with high discharge capacity of ∼800 mAhg−1 of tin, in contrast to a rapid capacity fade in the conventional electrolyte. |
---|---|
ISSN: | 0013-4651 1945-7111 |
DOI: | 10.1149/2.0661412jes |