Interfacial Chemistry Control for Performance Enhancement of Micron Tin-Nickel/Graphite Battery Anode

Designing and controlling the anode-electrolyte interfacial chemistry of a micron Sn-Ni/graphite composite battery anode led to the formation of a stable solid electrolyte interphase (SEI) layer. We utilized fluoroethylene carbonate (FEC)-based electrolyte that is more interfacially compatible than...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2014-01, Vol.161 (12), p.A1851-A1859
Hauptverfasser: Hong, Sukhyun, Choo, Myeong-Ho, Kwon, Yo Han, Kim, Je Young, Song, Seung-Wan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Designing and controlling the anode-electrolyte interfacial chemistry of a micron Sn-Ni/graphite composite battery anode led to the formation of a stable solid electrolyte interphase (SEI) layer. We utilized fluoroethylene carbonate (FEC)-based electrolyte that is more interfacially compatible than an EC-based electrolyte, trimethyl phosphite electrolyte additive that reduces the attack of LiPF6-derived acidic species in the electrolyte, and the addition of a low fraction of SnF2 to anode for capturing the F anions of HF present in the electrolyte. Mechanistic surface chemistry studies using ATR FTIR and X-ray photoelectron spectroscopy revealed that the SnF2 transforms to SnF4 by capturing F anions, while FEC and phosphite provide a surface protective and robust SEI. The interfacially controlled composite anode with a tuned content of graphite exhibits good cycling stability (90% retention at the 50th cycle) with high discharge capacity of ∼800 mAhg−1 of tin, in contrast to a rapid capacity fade in the conventional electrolyte.
ISSN:0013-4651
1945-7111
DOI:10.1149/2.0661412jes