Direct Homo/Heterogeneous Bonding of Silicon and Glass Using Vacuum Ultraviolet Irradiation in Air
We develop a cost-effective vacuum ultraviolet (VUV) irradiation in air combined with an in situ bonding process. The whole bonding process does not require high vacuum environments. Strong bonding strengths for Si/Si, Si/glass, and glass/glass pairs were achieved with the assistance of annealing at...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2018-01, Vol.165 (4), p.H3093-H3098 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop a cost-effective vacuum ultraviolet (VUV) irradiation in air combined with an in situ bonding process. The whole bonding process does not require high vacuum environments. Strong bonding strengths for Si/Si, Si/glass, and glass/glass pairs were achieved with the assistance of annealing at 200°C. There was no crack or defect at the bonding interfaces. The excellent optical transparency of the bonded glass/glass pairs was demonstrated in the UV-visible range. On the basis of the surface and bonding interface characterizations, the low-temperature bonding mechanism was investigated and discussed. Similar to the plasma activated bonding, the internal water stress corrosion plays a crucial role in the mechanical evolution of bonding interface between the VUV irradiated surfaces during annealing. This facile bonding method offers great potential for silicon- and glass- based homo/heterogeneous integrations in microelectronics, optoelectronics and microfluidics. |
---|---|
ISSN: | 0013-4651 1945-7111 |
DOI: | 10.1149/2.0161804jes |