Micromolding of Ni-P with Reduced Ferromagnetic Properties for 3D MEMS

This paper presents the development of nickel phosphorus (Ni-P) micromolding for the manufacturing of a 3D electrostatic energy harvesting microsystem. Ni-P alloy exhibits weak ferromagnetic properties beyond 10-12 wt% phosphorus content. Deposits were prepared at different current densities (−10 to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2017-01, Vol.164 (5), p.B3096-B3100
Hauptverfasser: Risquez, S., Woytasik, M., Cai, H., Philippe, H., Bayle, F., Lefeuvre, E., Moulin, J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents the development of nickel phosphorus (Ni-P) micromolding for the manufacturing of a 3D electrostatic energy harvesting microsystem. Ni-P alloy exhibits weak ferromagnetic properties beyond 10-12 wt% phosphorus content. Deposits were prepared at different current densities (−10 to −150 mA/cm²) and concentration of phosphorous acid in the electrolyte (0-20 g/l). It was found that the deposition rate decreases when phosphorus content increases in the deposit. The final process leaded the choice of a H3PO3 concentration of 5 g/l to reach a 0.1 μm/min deposition rate for phosphorus content higher than 13 wt%. Mechanical, electrical and magnetic properties of the Ni-P films were investigated on 1 mm² and 1 cm² square deposit and confirmed the suitability of that material for the target MEMS. Comb patterns of micromolded Ni-P have been realized on a 2-inch wafer, leading to a 10 μm thick deposit containing 13.5 wt% in P, which is, at our knowledge, the first high phosphorus Ni-P micromolding involving electrodeposition growth for 3D MEMS applications.
ISSN:0013-4651
1945-7111
DOI:10.1149/2.0151705jes