Particle Cleaning Technologies to Meet Advanced Semiconductor Device Process Requirements

Dealing with nanometer-sized particulate contamination is still one of the major challenges during the manufacturing of yielding semiconductor devices. This is especially true for the increasing number of critical processing steps, where residues of particulate matter need to be removed without mech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ECS journal of solid state science and technology 2014-01, Vol.3 (1), p.N3069-N3080
Hauptverfasser: Okorn-Schmidt, Harald F., Holsteyns, Frank, Lippert, Alexander, Mui, David, Kawaguchi, Mark, Lechner, Christiane, Frommhold, Philipp E., Nowak, Till, Reuter, Fabian, Piqué, Miquel Banchs, Cairós, Carlos, Mettin, Robert
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dealing with nanometer-sized particulate contamination is still one of the major challenges during the manufacturing of yielding semiconductor devices. This is especially true for the increasing number of critical processing steps, where residues of particulate matter need to be removed without mechanically damaging sensitive device patterns and, at the same time, achieve the lowest possible substrate loss. If higher substrate loss would be permitted, a more or less pure chemical mechanism could be employed (e.g. particle undercut by substrate etching and lift-off). However, being only allowed to have statistically seen sub-Angstrom material loss, physical forces need to be integrated jointly with the appropriate chemical support. In this paper we describe particle cleaning techniques, which are based on monodisperse droplet impact, controlled bubble cavitation (acoustic and laser induced), moving contact lines as well as normal-directed extensional flow to meet present and future industry requirements.
ISSN:2162-8769
2162-8777
DOI:10.1149/2.011401jss