High-Performance Li-Ion Battery Anodes Based on Silicon-Graphene Self-Assemblies
A series of Si/graphene sheet/carbon (Si/GS/C) composites was prepared by electrostatic self-assembly between amine-grafted silicon nanoparticles (SiNPs) and graphene oxide (GO). The Si/GS derived from carbonization of Si/GO assemblies showed limited cycling stability owing to loose cohesion between...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2017-01, Vol.164 (1), p.A6075-A6083 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A series of Si/graphene sheet/carbon (Si/GS/C) composites was prepared by electrostatic self-assembly between amine-grafted silicon nanoparticles (SiNPs) and graphene oxide (GO). The Si/GS derived from carbonization of Si/GO assemblies showed limited cycling stability owing to loose cohesion between SiNPs and graphene, and increased impedances during cycling. To counteract the cycling instability of Si/GS, an additional carbon-gel coating was applied to the Si/GO assemblies in situ in solution followed by carbonization to yield dense three-dimensional particulate Si/GS/C composite with many internal voids. The obtained Si/GS/C composites showed much better electrochemical performances than the Si/GS owing to enhanced cohesion between the SiNPs and the carbon structures, which reduced the impedance buildup and protected the SiNPs from direct exposure to the electrolyte. A strategy for practical use of a high-capacity Si/GS/C composite was also demonstrated using a hybrid composite prepared by mixing it with commercial graphite. The hybrid composite electrode showed specific and volumetric capacities that were 200% and 12% larger, respectively, than those of graphite, excellent cycling stability, and CEs (>99.7%) exceeding those of graphite. Hence, electrostatic self-assembly of SiNPs and GO followed by in situ carbon coating can produce reliable, high-performance anodes for high-energy LIBs. |
---|---|
ISSN: | 0013-4651 1945-7111 |
DOI: | 10.1149/2.0101701jes |