Study of Pyrazole as Copper Corrosion Inhibitor in Alkaline Post Chemical Mechanical Polishing Cleaning Solution

In microelectronics fabrication, post chemical mechanical polishing (CMP) cleaning is required to remove organic contaminants and particles left on copper interconnects after the CMP process. Use of cleaning solutions, however, causes serious reliability issues due to corrosion and recession of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ECS journal of solid state science and technology 2014-01, Vol.3 (10), p.P293-P297
Hauptverfasser: Goswami, Arindom, Koskey, Simon, Mukherjee, Tamal, Chyan, Oliver
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In microelectronics fabrication, post chemical mechanical polishing (CMP) cleaning is required to remove organic contaminants and particles left on copper interconnects after the CMP process. Use of cleaning solutions, however, causes serious reliability issues due to corrosion and recession of the interconnects. In this study, Pyrazole is demonstrated to be a potentially superior Cu corrosion inhibitor for tetramethyl ammonium hydroxide (TMAH)-based post CMP cleaning solutions at pH 14. Micropattern corrosion screening results and electrochemical impedance spectroscopy (EIS) revealed that 1 mM Pyrazole in 8 wt% TMAH solution inhibits Cu corrosion more effectively than 10 mM benzotriazole (BTA) under same conditions. Moreover, water contact angle measurement results also showed that Pyrazole-treated Cu surfaces are relatively hydrophilic compared to those treated with BTA/TMAH. X-ray photoelectron spectroscopy (XPS) analysis supports Cu-Pyrazole complex formation on the Cu surface. Overall Cu corrosion rate in TMAH-based highly alkaline post CMP cleaning solution is shown to be considerably reduced to less than 1Å/min by addition of 1 mM Pyrazole.
ISSN:2162-8769
2162-8777
DOI:10.1149/2.0011410jss