Multimodal Single-Entity Electrochemical Fluoride Sensor for Fuel Cell Membrane Degradation Diagnostics
To the best of our knowledge, very few works have been done for the continuous real-time monitoring of Proton Exchange Membrane Fuel Cells (PEMFCs) membrane degradation based on fluoride-specific electrochemical microsensors. PEMFCs are eco-smart energy sources for efficient transportation but exper...
Gespeichert in:
Veröffentlicht in: | ECS sensors plus 2022-09, Vol.1 (3), p.35601 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To the best of our knowledge, very few works have been done for the continuous real-time monitoring of Proton Exchange Membrane Fuel Cells (PEMFCs) membrane degradation based on fluoride-specific electrochemical microsensors. PEMFCs are eco-smart energy sources for efficient transportation but experience variable degradation rates that wear the Membrane Electrode Assembly (MEA), a critical component of the fuel cell’s functionality. Current market options lack specific diagnostics and a legitimate indication of when exactly the membrane needs to be replaced. As such, this work focused on manufacturing a sensor for measuring MEA degradation in real-time by selectively monitoring fluoride concentration in effluent water, a signature PEMFCs degradation status, through functionalized LaF
3
:(Au nanoparticle) thin films (∼60 nm). The sensor’s exceptional specificity/sensitivity has been achieved in real-time at a sub 10 ppb level, optimized through spin-coating deposition and post-annealing process. Its multimodal readout has been achieved and studied through the characterizations of open circuit potential, cyclic voltammetry, chronoamperometry, and differential pulse voltammetry revealing a consistent linear decrease of 15.7 mA cm
−2
at 0 ppb to 10.2 mA cm
−2
, while also maintaining its low-cost, small size, and robustness. |
---|---|
ISSN: | 2754-2726 2754-2726 |
DOI: | 10.1149/2754-2726/ac8aa8 |