Influence of Synthesis Process on Mechanical and Electrical Characteristics of Mesoporous Pure Silica-Zeolite

The dielectric constant, elastic modulus and reliability of the pure silica-zeolite composite film which was formed by self-assembly of porous silica having hydrothermally crystallized zeolite nanoparticles. Fourier-transform-infrared spectroscopy indicated that Si-OH and O-H bonds decreased by zeol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2011-01, Vol.158 (6), p.H659-H665
Hauptverfasser: Seo, T., Yoshino, T., Ohnuki, N., Seino, Y., Cho, Y., Hata, N., Kikkawa, T.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dielectric constant, elastic modulus and reliability of the pure silica-zeolite composite film which was formed by self-assembly of porous silica having hydrothermally crystallized zeolite nanoparticles. Fourier-transform-infrared spectroscopy indicated that Si-OH and O-H bonds decreased by zeolite formation, resulting in the decrease of the dielectric constant. Silylation hardening by 1,3,5,7-tetramethylcyclotetrasiloxane (TMCTS) vapor treatment could decrease the dielectric constant due to the decrease of Si-OH and O-H bonds. The elastic modulus of 7.03 GPa and the dielectric constant of 1.94 were achieved for the meso-porous silica-zeolite film by silylation hardening. Furthermore, mean-time-to-failure (MTF) lifetime of time-dependent dielectric breakdown (TDDB) is longer than ten years at 125°C under the electric field of 3.4 MV/cm.
ISSN:0013-4651
1945-7111
DOI:10.1149/1.3570582