Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments

Recently, polybenzimidazole membrane doped with phosphoric acid (PBI) was found to have promising properties for use as a polymer electrolyte in a high temperature (ca. 150 to 200 C) proton exchange membrane direct methanol fuel cell. However, operation at 200 C in strongly reducing and oxidizing en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 1996-04, Vol.143 (4), p.1225-1232
Hauptverfasser: SAMMS, S. R, WASMUS, S, SAVINELL, R. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1232
container_issue 4
container_start_page 1225
container_title Journal of the Electrochemical Society
container_volume 143
creator SAMMS, S. R
WASMUS, S
SAVINELL, R. F
description Recently, polybenzimidazole membrane doped with phosphoric acid (PBI) was found to have promising properties for use as a polymer electrolyte in a high temperature (ca. 150 to 200 C) proton exchange membrane direct methanol fuel cell. However, operation at 200 C in strongly reducing and oxidizing environments introduces concerns of the thermal stability of the polymer electrolyte. To simulate the conditions in a high temperature fuel cell, PBI samples were loaded with fuel cell grade platinum black, doped with ca. 480 mole percent phosphoric acid (i.e., 4.8 H{sub 3}PO{sub 4} molecules per PBI repeat unit) and heated under atmospheres of either nitrogen, 5% hydrogen, or air in a thermal gravimetric analyzer. The products of decomposition were taken directly into a mass spectrometer for identification. In all cases weight loss below 400 C was found to be due to loss of water. Judging from the results of these tests, the thermal stability of PBI is more than adequate for use as a polymer electrolyte in a high temperature fuel cell.
doi_str_mv 10.1149/1.1836621
format Article
fullrecord <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1149_1_1836621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-12c7f4dbd09f799ff64c218ea888bb27f0113112e426fa6e840be1a0d395619a3</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOD4W_oMIblx0zG3SNFmK-IIBN-O6pHnMRNKkNBlh_PVWZnB1OdzvXO45CN0AWQIw-QBLEJTzGk7QAiRrqhYATtGCEKAV4w2co4ucv2YJgrULtFlv7TSogHNRvQ--7HFyeJxSSRHrFM1OFx83WGlvsEmjNXhMYd_b-OMHb9RPChb7iLMfdkGVee12NmBtQ8A2fvspxcHGkq_QmVMh2-vjvESfL8_rp7dq9fH6_vS4qjSVpFRQ69Yx0xsiXSulc5zpGoRVQoi-r1s3_00Bastq7hS3gpHegiKGyoaDVPQS3R7uplx8l7UvVm_nHNHq0tUNkIbNzP2B0VPKebKuGyc_qGnfAen-WuygO7Y4s3cHdlRZq-AmFbXP_wZK2oYITn8Bzjpybg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments</title><source>Institute of Physics Journals</source><creator>SAMMS, S. R ; WASMUS, S ; SAVINELL, R. F</creator><creatorcontrib>SAMMS, S. R ; WASMUS, S ; SAVINELL, R. F</creatorcontrib><description>Recently, polybenzimidazole membrane doped with phosphoric acid (PBI) was found to have promising properties for use as a polymer electrolyte in a high temperature (ca. 150 to 200 C) proton exchange membrane direct methanol fuel cell. However, operation at 200 C in strongly reducing and oxidizing environments introduces concerns of the thermal stability of the polymer electrolyte. To simulate the conditions in a high temperature fuel cell, PBI samples were loaded with fuel cell grade platinum black, doped with ca. 480 mole percent phosphoric acid (i.e., 4.8 H{sub 3}PO{sub 4} molecules per PBI repeat unit) and heated under atmospheres of either nitrogen, 5% hydrogen, or air in a thermal gravimetric analyzer. The products of decomposition were taken directly into a mass spectrometer for identification. In all cases weight loss below 400 C was found to be due to loss of water. Judging from the results of these tests, the thermal stability of PBI is more than adequate for use as a polymer electrolyte in a high temperature fuel cell.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1.1836621</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>Pennington, NJ: Electrochemical Society</publisher><subject>30 DIRECT ENERGY CONVERSION ; ALCOHOL FUEL CELLS ; Applied sciences ; BENZIMIDAZOLES ; DEHYDRATION ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; ORGANIC POLYMERS ; SOLID ELECTROLYTE FUEL CELLS ; SOLID ELECTROLYTES ; STABILITY ; THERMAL TESTING</subject><ispartof>Journal of the Electrochemical Society, 1996-04, Vol.143 (4), p.1225-1232</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-12c7f4dbd09f799ff64c218ea888bb27f0113112e426fa6e840be1a0d395619a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3075086$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/251054$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>SAMMS, S. R</creatorcontrib><creatorcontrib>WASMUS, S</creatorcontrib><creatorcontrib>SAVINELL, R. F</creatorcontrib><title>Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments</title><title>Journal of the Electrochemical Society</title><description>Recently, polybenzimidazole membrane doped with phosphoric acid (PBI) was found to have promising properties for use as a polymer electrolyte in a high temperature (ca. 150 to 200 C) proton exchange membrane direct methanol fuel cell. However, operation at 200 C in strongly reducing and oxidizing environments introduces concerns of the thermal stability of the polymer electrolyte. To simulate the conditions in a high temperature fuel cell, PBI samples were loaded with fuel cell grade platinum black, doped with ca. 480 mole percent phosphoric acid (i.e., 4.8 H{sub 3}PO{sub 4} molecules per PBI repeat unit) and heated under atmospheres of either nitrogen, 5% hydrogen, or air in a thermal gravimetric analyzer. The products of decomposition were taken directly into a mass spectrometer for identification. In all cases weight loss below 400 C was found to be due to loss of water. Judging from the results of these tests, the thermal stability of PBI is more than adequate for use as a polymer electrolyte in a high temperature fuel cell.</description><subject>30 DIRECT ENERGY CONVERSION</subject><subject>ALCOHOL FUEL CELLS</subject><subject>Applied sciences</subject><subject>BENZIMIDAZOLES</subject><subject>DEHYDRATION</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>ORGANIC POLYMERS</subject><subject>SOLID ELECTROLYTE FUEL CELLS</subject><subject>SOLID ELECTROLYTES</subject><subject>STABILITY</subject><subject>THERMAL TESTING</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAUhYMoOD4W_oMIblx0zG3SNFmK-IIBN-O6pHnMRNKkNBlh_PVWZnB1OdzvXO45CN0AWQIw-QBLEJTzGk7QAiRrqhYATtGCEKAV4w2co4ucv2YJgrULtFlv7TSogHNRvQ--7HFyeJxSSRHrFM1OFx83WGlvsEmjNXhMYd_b-OMHb9RPChb7iLMfdkGVee12NmBtQ8A2fvspxcHGkq_QmVMh2-vjvESfL8_rp7dq9fH6_vS4qjSVpFRQ69Yx0xsiXSulc5zpGoRVQoi-r1s3_00Bastq7hS3gpHegiKGyoaDVPQS3R7uplx8l7UvVm_nHNHq0tUNkIbNzP2B0VPKebKuGyc_qGnfAen-WuygO7Y4s3cHdlRZq-AmFbXP_wZK2oYITn8Bzjpybg</recordid><startdate>19960401</startdate><enddate>19960401</enddate><creator>SAMMS, S. R</creator><creator>WASMUS, S</creator><creator>SAVINELL, R. F</creator><general>Electrochemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19960401</creationdate><title>Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments</title><author>SAMMS, S. R ; WASMUS, S ; SAVINELL, R. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-12c7f4dbd09f799ff64c218ea888bb27f0113112e426fa6e840be1a0d395619a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>30 DIRECT ENERGY CONVERSION</topic><topic>ALCOHOL FUEL CELLS</topic><topic>Applied sciences</topic><topic>BENZIMIDAZOLES</topic><topic>DEHYDRATION</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>ORGANIC POLYMERS</topic><topic>SOLID ELECTROLYTE FUEL CELLS</topic><topic>SOLID ELECTROLYTES</topic><topic>STABILITY</topic><topic>THERMAL TESTING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SAMMS, S. R</creatorcontrib><creatorcontrib>WASMUS, S</creatorcontrib><creatorcontrib>SAVINELL, R. F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SAMMS, S. R</au><au>WASMUS, S</au><au>SAVINELL, R. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments</atitle><jtitle>Journal of the Electrochemical Society</jtitle><date>1996-04-01</date><risdate>1996</risdate><volume>143</volume><issue>4</issue><spage>1225</spage><epage>1232</epage><pages>1225-1232</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>Recently, polybenzimidazole membrane doped with phosphoric acid (PBI) was found to have promising properties for use as a polymer electrolyte in a high temperature (ca. 150 to 200 C) proton exchange membrane direct methanol fuel cell. However, operation at 200 C in strongly reducing and oxidizing environments introduces concerns of the thermal stability of the polymer electrolyte. To simulate the conditions in a high temperature fuel cell, PBI samples were loaded with fuel cell grade platinum black, doped with ca. 480 mole percent phosphoric acid (i.e., 4.8 H{sub 3}PO{sub 4} molecules per PBI repeat unit) and heated under atmospheres of either nitrogen, 5% hydrogen, or air in a thermal gravimetric analyzer. The products of decomposition were taken directly into a mass spectrometer for identification. In all cases weight loss below 400 C was found to be due to loss of water. Judging from the results of these tests, the thermal stability of PBI is more than adequate for use as a polymer electrolyte in a high temperature fuel cell.</abstract><cop>Pennington, NJ</cop><pub>Electrochemical Society</pub><doi>10.1149/1.1836621</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 1996-04, Vol.143 (4), p.1225-1232
issn 0013-4651
1945-7111
language eng
recordid cdi_crossref_primary_10_1149_1_1836621
source Institute of Physics Journals
subjects 30 DIRECT ENERGY CONVERSION
ALCOHOL FUEL CELLS
Applied sciences
BENZIMIDAZOLES
DEHYDRATION
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
ORGANIC POLYMERS
SOLID ELECTROLYTE FUEL CELLS
SOLID ELECTROLYTES
STABILITY
THERMAL TESTING
title Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20stability%20of%20proton%20conducting%20acid%20doped%20polybenzimidazole%20in%20simulated%20fuel%20cell%20environments&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=SAMMS,%20S.%20R&rft.date=1996-04-01&rft.volume=143&rft.issue=4&rft.spage=1225&rft.epage=1232&rft.pages=1225-1232&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1.1836621&rft_dat=%3Cpascalfrancis_osti_%3E3075086%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true