Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments
Recently, polybenzimidazole membrane doped with phosphoric acid (PBI) was found to have promising properties for use as a polymer electrolyte in a high temperature (ca. 150 to 200 C) proton exchange membrane direct methanol fuel cell. However, operation at 200 C in strongly reducing and oxidizing en...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 1996-04, Vol.143 (4), p.1225-1232 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1232 |
---|---|
container_issue | 4 |
container_start_page | 1225 |
container_title | Journal of the Electrochemical Society |
container_volume | 143 |
creator | SAMMS, S. R WASMUS, S SAVINELL, R. F |
description | Recently, polybenzimidazole membrane doped with phosphoric acid (PBI) was found to have promising properties for use as a polymer electrolyte in a high temperature (ca. 150 to 200 C) proton exchange membrane direct methanol fuel cell. However, operation at 200 C in strongly reducing and oxidizing environments introduces concerns of the thermal stability of the polymer electrolyte. To simulate the conditions in a high temperature fuel cell, PBI samples were loaded with fuel cell grade platinum black, doped with ca. 480 mole percent phosphoric acid (i.e., 4.8 H{sub 3}PO{sub 4} molecules per PBI repeat unit) and heated under atmospheres of either nitrogen, 5% hydrogen, or air in a thermal gravimetric analyzer. The products of decomposition were taken directly into a mass spectrometer for identification. In all cases weight loss below 400 C was found to be due to loss of water. Judging from the results of these tests, the thermal stability of PBI is more than adequate for use as a polymer electrolyte in a high temperature fuel cell. |
doi_str_mv | 10.1149/1.1836621 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1149_1_1836621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-12c7f4dbd09f799ff64c218ea888bb27f0113112e426fa6e840be1a0d395619a3</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOD4W_oMIblx0zG3SNFmK-IIBN-O6pHnMRNKkNBlh_PVWZnB1OdzvXO45CN0AWQIw-QBLEJTzGk7QAiRrqhYATtGCEKAV4w2co4ucv2YJgrULtFlv7TSogHNRvQ--7HFyeJxSSRHrFM1OFx83WGlvsEmjNXhMYd_b-OMHb9RPChb7iLMfdkGVee12NmBtQ8A2fvspxcHGkq_QmVMh2-vjvESfL8_rp7dq9fH6_vS4qjSVpFRQ69Yx0xsiXSulc5zpGoRVQoi-r1s3_00Bastq7hS3gpHegiKGyoaDVPQS3R7uplx8l7UvVm_nHNHq0tUNkIbNzP2B0VPKebKuGyc_qGnfAen-WuygO7Y4s3cHdlRZq-AmFbXP_wZK2oYITn8Bzjpybg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments</title><source>Institute of Physics Journals</source><creator>SAMMS, S. R ; WASMUS, S ; SAVINELL, R. F</creator><creatorcontrib>SAMMS, S. R ; WASMUS, S ; SAVINELL, R. F</creatorcontrib><description>Recently, polybenzimidazole membrane doped with phosphoric acid (PBI) was found to have promising properties for use as a polymer electrolyte in a high temperature (ca. 150 to 200 C) proton exchange membrane direct methanol fuel cell. However, operation at 200 C in strongly reducing and oxidizing environments introduces concerns of the thermal stability of the polymer electrolyte. To simulate the conditions in a high temperature fuel cell, PBI samples were loaded with fuel cell grade platinum black, doped with ca. 480 mole percent phosphoric acid (i.e., 4.8 H{sub 3}PO{sub 4} molecules per PBI repeat unit) and heated under atmospheres of either nitrogen, 5% hydrogen, or air in a thermal gravimetric analyzer. The products of decomposition were taken directly into a mass spectrometer for identification. In all cases weight loss below 400 C was found to be due to loss of water. Judging from the results of these tests, the thermal stability of PBI is more than adequate for use as a polymer electrolyte in a high temperature fuel cell.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1.1836621</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>Pennington, NJ: Electrochemical Society</publisher><subject>30 DIRECT ENERGY CONVERSION ; ALCOHOL FUEL CELLS ; Applied sciences ; BENZIMIDAZOLES ; DEHYDRATION ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; ORGANIC POLYMERS ; SOLID ELECTROLYTE FUEL CELLS ; SOLID ELECTROLYTES ; STABILITY ; THERMAL TESTING</subject><ispartof>Journal of the Electrochemical Society, 1996-04, Vol.143 (4), p.1225-1232</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-12c7f4dbd09f799ff64c218ea888bb27f0113112e426fa6e840be1a0d395619a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3075086$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/251054$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>SAMMS, S. R</creatorcontrib><creatorcontrib>WASMUS, S</creatorcontrib><creatorcontrib>SAVINELL, R. F</creatorcontrib><title>Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments</title><title>Journal of the Electrochemical Society</title><description>Recently, polybenzimidazole membrane doped with phosphoric acid (PBI) was found to have promising properties for use as a polymer electrolyte in a high temperature (ca. 150 to 200 C) proton exchange membrane direct methanol fuel cell. However, operation at 200 C in strongly reducing and oxidizing environments introduces concerns of the thermal stability of the polymer electrolyte. To simulate the conditions in a high temperature fuel cell, PBI samples were loaded with fuel cell grade platinum black, doped with ca. 480 mole percent phosphoric acid (i.e., 4.8 H{sub 3}PO{sub 4} molecules per PBI repeat unit) and heated under atmospheres of either nitrogen, 5% hydrogen, or air in a thermal gravimetric analyzer. The products of decomposition were taken directly into a mass spectrometer for identification. In all cases weight loss below 400 C was found to be due to loss of water. Judging from the results of these tests, the thermal stability of PBI is more than adequate for use as a polymer electrolyte in a high temperature fuel cell.</description><subject>30 DIRECT ENERGY CONVERSION</subject><subject>ALCOHOL FUEL CELLS</subject><subject>Applied sciences</subject><subject>BENZIMIDAZOLES</subject><subject>DEHYDRATION</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>ORGANIC POLYMERS</subject><subject>SOLID ELECTROLYTE FUEL CELLS</subject><subject>SOLID ELECTROLYTES</subject><subject>STABILITY</subject><subject>THERMAL TESTING</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAUhYMoOD4W_oMIblx0zG3SNFmK-IIBN-O6pHnMRNKkNBlh_PVWZnB1OdzvXO45CN0AWQIw-QBLEJTzGk7QAiRrqhYATtGCEKAV4w2co4ucv2YJgrULtFlv7TSogHNRvQ--7HFyeJxSSRHrFM1OFx83WGlvsEmjNXhMYd_b-OMHb9RPChb7iLMfdkGVee12NmBtQ8A2fvspxcHGkq_QmVMh2-vjvESfL8_rp7dq9fH6_vS4qjSVpFRQ69Yx0xsiXSulc5zpGoRVQoi-r1s3_00Bastq7hS3gpHegiKGyoaDVPQS3R7uplx8l7UvVm_nHNHq0tUNkIbNzP2B0VPKebKuGyc_qGnfAen-WuygO7Y4s3cHdlRZq-AmFbXP_wZK2oYITn8Bzjpybg</recordid><startdate>19960401</startdate><enddate>19960401</enddate><creator>SAMMS, S. R</creator><creator>WASMUS, S</creator><creator>SAVINELL, R. F</creator><general>Electrochemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19960401</creationdate><title>Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments</title><author>SAMMS, S. R ; WASMUS, S ; SAVINELL, R. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-12c7f4dbd09f799ff64c218ea888bb27f0113112e426fa6e840be1a0d395619a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>30 DIRECT ENERGY CONVERSION</topic><topic>ALCOHOL FUEL CELLS</topic><topic>Applied sciences</topic><topic>BENZIMIDAZOLES</topic><topic>DEHYDRATION</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>ORGANIC POLYMERS</topic><topic>SOLID ELECTROLYTE FUEL CELLS</topic><topic>SOLID ELECTROLYTES</topic><topic>STABILITY</topic><topic>THERMAL TESTING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SAMMS, S. R</creatorcontrib><creatorcontrib>WASMUS, S</creatorcontrib><creatorcontrib>SAVINELL, R. F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SAMMS, S. R</au><au>WASMUS, S</au><au>SAVINELL, R. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments</atitle><jtitle>Journal of the Electrochemical Society</jtitle><date>1996-04-01</date><risdate>1996</risdate><volume>143</volume><issue>4</issue><spage>1225</spage><epage>1232</epage><pages>1225-1232</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>Recently, polybenzimidazole membrane doped with phosphoric acid (PBI) was found to have promising properties for use as a polymer electrolyte in a high temperature (ca. 150 to 200 C) proton exchange membrane direct methanol fuel cell. However, operation at 200 C in strongly reducing and oxidizing environments introduces concerns of the thermal stability of the polymer electrolyte. To simulate the conditions in a high temperature fuel cell, PBI samples were loaded with fuel cell grade platinum black, doped with ca. 480 mole percent phosphoric acid (i.e., 4.8 H{sub 3}PO{sub 4} molecules per PBI repeat unit) and heated under atmospheres of either nitrogen, 5% hydrogen, or air in a thermal gravimetric analyzer. The products of decomposition were taken directly into a mass spectrometer for identification. In all cases weight loss below 400 C was found to be due to loss of water. Judging from the results of these tests, the thermal stability of PBI is more than adequate for use as a polymer electrolyte in a high temperature fuel cell.</abstract><cop>Pennington, NJ</cop><pub>Electrochemical Society</pub><doi>10.1149/1.1836621</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4651 |
ispartof | Journal of the Electrochemical Society, 1996-04, Vol.143 (4), p.1225-1232 |
issn | 0013-4651 1945-7111 |
language | eng |
recordid | cdi_crossref_primary_10_1149_1_1836621 |
source | Institute of Physics Journals |
subjects | 30 DIRECT ENERGY CONVERSION ALCOHOL FUEL CELLS Applied sciences BENZIMIDAZOLES DEHYDRATION Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells ORGANIC POLYMERS SOLID ELECTROLYTE FUEL CELLS SOLID ELECTROLYTES STABILITY THERMAL TESTING |
title | Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20stability%20of%20proton%20conducting%20acid%20doped%20polybenzimidazole%20in%20simulated%20fuel%20cell%20environments&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=SAMMS,%20S.%20R&rft.date=1996-04-01&rft.volume=143&rft.issue=4&rft.spage=1225&rft.epage=1232&rft.pages=1225-1232&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1.1836621&rft_dat=%3Cpascalfrancis_osti_%3E3075086%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |