The surface film formed on a lithium metal electrode in a new imide electrolyte, lithium bis(perfluoroethylsulfonylimide) [LiN(C2F5SO2)2]

A newly developed imide electrolyte salt, LiN(C{sub 2}F{sub 5}SO{sub 2}){sub 2} (LiBETI) was found to give very uniform, thin, and stable surface films on a lithium metal electrode in the propylene carbonate (PC) solution. LiBETI/PC was studied and compared to determine its ability to form such a st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 1999-02, Vol.146 (2), p.462-469
Hauptverfasser: NAOI, K, MORI, M, NARUOKA, Y, LAMANNA, W. M, ATANASOSKI, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A newly developed imide electrolyte salt, LiN(C{sub 2}F{sub 5}SO{sub 2}){sub 2} (LiBETI) was found to give very uniform, thin, and stable surface films on a lithium metal electrode in the propylene carbonate (PC) solution. LiBETI/PC was studied and compared to determine its ability to form such a stable surface film, with conventional electrolyte systems such as LiCF{sub 3}SO{sub 3}/PC, LiPF{sub 6}/PC, and LiN(CF{sub 3}So{sub 2}){sub 2}/PC (LiTFSI/PC). The surface film formed in LiBETI/PC system was a hemispherical, and the composition of the film consisted mainly of LiF, which is similar to that in a LiPF{sub 6}/PC system. Quartz crystal microbalance (QCM) and cyclic voltammetry (after the tenth cycle) indicated that the surface film formed in LiBETI/PC (ca. 50 nm) was thinner than those in LiPF{sub 6}/PC (ca. 90 nm), LiTFSI/PC (ca. 140 nm), or LiCF{sub 3}SO{sub 3}/PC (ca. 255 nm). The variation of the resonance resistance ({Delta}R) obtained from in situ CV/QCM measurement, which has been demonstrated to be a good measure of the surface roughness, also suggested that LiBETI/PC system gave a compact and smooth surface topology during lithium deposition-dissolution cycles. Impedance spectroscopy together with preliminary cycling tests showed that the LiBETI/PC system provides the highest cycling efficiency and improved cycleability among existing electrolyte salt systems in rechargeable battery systems employing lithium metal anodes.
ISSN:0013-4651
1945-7111
DOI:10.1149/1.1391629