Unraveling the Complex Temperature-Dependent Performance and Degradation of Li-Ion Batteries with Silicon-Graphite Composite Anodes

Competing effects of graphite and Si result in a complex temperature dependent performance and degradation of Li-ion batteries with Si-graphite composite anodes. This study examines the influence of varying the Si content (0 to 20.8 wt%) in Si-graphite composite anodes with consistent areal capacity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2024-11, Vol.171 (11), p.110506
Hauptverfasser: Feinauer, Max, Wohlfahrt-Mehrens, Margret, Hölzle, Markus, Waldmann, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Competing effects of graphite and Si result in a complex temperature dependent performance and degradation of Li-ion batteries with Si-graphite composite anodes. This study examines the influence of varying the Si content (0 to 20.8 wt%) in Si-graphite composite anodes with consistent areal capacity and N/P ratio in full cells containing NMC622 cathodes. One hundred pilot-scale double-layer pouch cells were built and cycle aged in the temperature range from −10 to 55 °C. Electrochemical characterization demonstrated that increasing Si contents enhance capacity and mitigate internal resistance at low temperatures. On the other hand, high Si contents decrease charge-discharge energy efficiency and cycle life, particularly at elevated temperatures. Post-mortem analysis of aged electrodes, including physico-chemical characterization (scanning electron microscopy, energy-dispersive X-ray analysis, thickness measurements) and cell reconstruction revealed significant solid electrolyte interphase growth and increased loss of active material in anodes with high Si content. The optimum temperature for longest cycle life as derived from Arrhenius plots decreased from 30 °C for graphite anodes to 10 °C for cells with moderate Si content up to 5.8 wt%. These findings allow the design of optimized cells by balancing the Si content versus operating temperature in order to achieve lowest cell aging. Li-ion cells with varying anode Si content were tested in a wide temperature range. Graphite anodes show best long-term stability, but poor low temperature performance. Higher Si content improves low temperature performance, but decreases cycle life. Optimal Si content depends on intended battery operating temperature range.
ISSN:0013-4651
1945-7111
DOI:10.1149/1945-7111/ad8d0d