Hollow Tubular Biomass-Derived Carbon Loaded NiS/C for High Performance Lithium Storage

Transition Metal Sulfides (TMSs) have received broadly research and application in the Lithium-ion Batteries (LIBs) field owing to their rare physical/chemical characteristics. Unfortunately, the fundamental flaws of volume expansion and poor electrical conductivity hampered its future practical imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2022-09, Vol.169 (9), p.90511
Hauptverfasser: Huang, Jiemeng, Xia, Guanghui, Cheng, Lei, Liu, Luzhi, Zhang, Yiyong, Duan, Jianguo, Zhang, Yingjie, Wang, Ding
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transition Metal Sulfides (TMSs) have received broadly research and application in the Lithium-ion Batteries (LIBs) field owing to their rare physical/chemical characteristics. Unfortunately, the fundamental flaws of volume expansion and poor electrical conductivity hampered its future practical implementation. Herein, a carbonization/activation procedure coupled with a facile solvothermal method and post-annealing strategy were developed to synthesize hollow tubular biomass-derived carbon (HBC) loaded NiS/C composite. The HBC serves a dual functional by providing highly active surface sites for NiS/C particles loading and naturally existing micron-level pores that can accommodate the volume variation. As a consequence, the HBC-NiS/C anode displayed strong lithium-ion storage performances with a high specific capacity (652 mAh g −1 at 0.2 A g −1 over 100 cycles), favorable rate capability, and exceptional structural durability.
ISSN:0013-4651
1945-7111
DOI:10.1149/1945-7111/ac8ede