A Single Particle-Based Battery Degradation Model Including Chemical and Mechanical Degradation Physics
Accurate and rapid prediction of the status of a lithium-ion battery is an important process in Battery Management System (BMS). In this work, a single particle model is developed by focusing on crack propagation coupled with Solid Electrolyte Interface (SEI) layer formation and its evolution. The l...
Gespeichert in:
Veröffentlicht in: | ECS transactions 2017-01, Vol.77 (11), p.1003-1014 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Accurate and rapid prediction of the status of a lithium-ion battery is an important process in Battery Management System (BMS). In this work, a single particle model is developed by focusing on crack propagation coupled with Solid Electrolyte Interface (SEI) layer formation and its evolution. The lithium ion loss due to the SEI layer evolution is integrated with our previously developed advanced single particle model that includes electrolytic physics. This model is fairly well predictive of capacity fade and voltage change as a function of cycle number and temperature. Despite its implementation in a single particle model, the results provide quantitative information on the role of SEI layer growth and crack propagation, and corresponding capacity fade and power loss. |
---|---|
ISSN: | 1938-5862 1938-6737 1938-6737 1938-5862 |
DOI: | 10.1149/07711.1003ecst |