Multi-Methodology Modeling and Design of Lithium-Air Cells with Aqueous Electrolyte
Metal-air batteries are being investigated as alternative to state-of-the-art lithium-ion batteries for mobile and stationary applications due to their higher specific energy and potentially lower cost. Modeling and simulation techniques allow a better understanding and improvement of the complex me...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Metal-air batteries are being investigated as alternative to state-of-the-art lithium-ion batteries for mobile and stationary applications due to their higher specific energy and potentially lower cost. Modeling and simulation techniques allow a better understanding and improvement of the complex mechanisms and properties of metal-air batteries. We present simulation results of a lithium-air (Li/O
2
) battery with aqueous alkaline (LiOH) electrolyte using three different methodologies, (i) Lattice-Boltzmann modeling on the porous electrode scale, (ii) multi-physics continuum modeling on the single-cell scale and (iii) system simulation of a Li/O
2
-battery-powered electric vehicle. Different cell designs (porous separator, stirred separator, and redox-flow design) are investigated in order to quantitatively assess their performance. Virtual aqueous lithium-air batteries yielded high specific energy (up to 755 Wh/kg), but considerably uncompetitive specific power, which prohibit the use in battery electric vehicles at the present stage of development. |
---|---|
ISSN: | 1938-5862 1938-6737 |
DOI: | 10.1149/06201.0137ecst |